

Supplemental Water Quality Analysis— St. Johns Bayou and New Madrid Floodway

Steven L. Ashby, Carlos E. Ruiz, and Patrick Deliman

April 2000

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Supplemental Water Quality Analysis— St. Johns Bayou and New Madrid **Floodway**

by Steven L. Ashby, Carlos E. Ruiz, Patrick N. Deliman **Environmental Laboratory** U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

U.S. Army Engineer Research and Development Center Cataloging-in-Publication Data

Ashby, Steven L.

Supplemental water quality analysis: St. Johns Bayou and New Madrid Floodway / by Steven L. Ashby, Carlos E. Ruiz, Patrick N. Deliman; prepared for U.S. Army Engineer District, Memphis.

186 p.: ill.; 28 cm. —(ERDC/EL; SR-00-7)

Includes bibliographic references.

- Water quality Missouri New Madrid Region.
 Environmental quality Missouri New Madrid Region.
 Groundwater Quality Missouri New Madrid Region.
- 4. Big Oak Tree State Park (Mo.) 5. New Madrid Floodway (Mo.) I. Ruiz, Carlos E.
- II. Deliman, Patrick N. III. United States. Army. Corps of Engineers. IV. Engineer Research and Development Center (U.S.) V. Environmental Laboratory (U.S.) VI. Title. VII. Series: ERDC/EL SR; 00-7.

TA7 E8 no.ERDC/EL SR-00-7

Contents

Figures 1 - 39

Preface	vii
Summary	viii
Conversion Factors, Non-SI to SI Units of Measurement	X
1—Introduction	1
2—Methods	2
Water Quality Assessments	
Evaluation of Project Impacts on Water Quality	4
Overview of Water Quality Processes in Wetlands	
Estimation of Upland and Agricultural Export Coefficients	
Nitrogen and Phosphorus	
Carbon	
Sediment	10
Sensitivity Analysis	
Evaluation of Project Impacts on Water Quality of the Mississippi River	
Evaluation of Potential Changes in Pesticide Usage on Water Quality	
Evaluation of Potential Impacts to Big Oak Tree State Park	
3—Results	14
Spreadsheet Analysis	17
Evaluation of Project Impacts on Water Quality of the Mississippi River	17
Evaluation of Potential Change in Pesticide Usage on Water Quality	
Evaluation of Potential Impacts to Big Oak Tree State Park	19
4—Discussion	21
5—Conclusions	24
References	25
Tables 1 17	

Appendix	A: Water Quality Data Sources – Annotated Bibliography A1
Appendix	B: Water Quality Data and Data Summaries
Appendix	C: Spreadsheet Analyses
Appendix	D. Literature Review of Herbicide Application
SF 298	
l ist of	Tables
Table 1.	Land Cover Area in the New Madrid Floodway
Table 2.	Land Cover Area in St Johns Bayou
Table 3.	Hydrologic Scenarios for the New Madrid Floodway and St Johns Bayou
Table 4.	Wetland Function Factors for Land Covers and Selected Water Quality Constituents
Table 5.	Summary and Ranking of Export Values for Nitrogen and Phosphorus for Selected Land Cover Types
Table 6.	Watershed Mass Balances (Peterjohn and Correll 1984)
Table 7.	Watershed Mass Balances for the Riparian Zone of an Agricultural Watershed (Lowrance et al. 1984)
Table 8.	Monthly Discharge (1000 cfs) for the Mississippi River at Hickman, KY
Table 9.	Summary Statistics for Selected Water Quality Constituents
Table 10.	Surface Water Quality Data Summary
Table 11.	Recommended Initial Water Quality Concentrations
Table 12.	Watershed Function Expressed as % Net Removal – New Madrid Floodway
Table 13.	Watershed Function Expressed as % Net Removal – St Johns Bayou

- Table 14. Potential Impacts on Nutrient and Sediment Loading Interactions Between the Mississippi River and the Study Area with the Project
- Table 15. Human Health Criteria for Pesticides in Drinking Water
- Table 16. Pesticides in Surface Waters (NAWQA Sites)
- Table 17. Mass Balance for Selected Water Quality Constituents at Big Oak Tree State Park

List of Figures

- Figure 1. Stations for Water Quality Data Retrieved from STORET
- Figure 2. Dissolved Oxygen Concentrations
- Figure 3. BOD₅ Measurements
- Figure 4. Nitrate/Nitrite Concentrations
- Figure 5. Organic Nitrogen Concentrations
- Figure 6. Total Phosphorus Concentrations
- Figure 7. Dissolved Phosphorus Concentrations
- Figure 8. Total Organic Carbon Concentrations
- Figure 9. Dissolved Organic Carbon Concentrations
- Figure 10. Suspended Solids Concentrations
- Figure 11. Residue Concentrations
- Figure 12. Instantaneous discharge measurements for Rives and Morehouse.
- Figure 13. Total Iron Concentrations
- Figure 14. Dissolved Iron Concentrations
- Figure 15. Distribution of Iron Concentrations in Well Water
- Figure 16. Distribution of Total Phosphorus Concentrations by Water Source
- Figure 17. Distribution of Nitrate and Nitrite Concentrations by Water Source
- Figure 18. Distribution of Organic Nitrogen Concentrations by Water Source

- Figure 19. Distribution of Ammonia Concentrations by Water Source
- Figure 20. Distribution of Total Kjeldahl Nitrogen Concentrations by Water Source
- Figure 21. Distribution of Conductivity Values by Water Source
- Figure 22. Distribution of Total Alkalinity Values by Water Source
- Figure 23. Nitrogen Removal for the New Madrid Floodway
- Figure 24. Phosphorus Removal for the New Madrid Floodway
- Figure 25. Organic Carbon Removal for the New Madrid Floodway
- Figure 26. Sediment Removal for the New Madrid Floodway
- Figure 27. Nitrogen Removal for St Johns Bayou
- Figure 28. Phosphorus Removal for St Johns Bayou
- Figure 29. Organic Carbon Removal for St Johns Bayou
- Figure 30. Sediment Removal for St Johns Bayou
- Figure 31. Distribution of Tebuthiuron
- Figure 32. Distribution of Prometon
- Figure 33. Distribution of Diethyl Atrazine
- Figure 34. Distribution of Permethrin
- Figure 35. Distribution of DCPA
- Figure 36. Distribution of Atrazine
- Figure 37. Distribution of Propoxur
- Figure 38. Distribution of Silvex
- Figure 39. Distribution of Simazine

Preface

The work reported herein was conducted for the U.S. Army Engineer District, Memphis, by the U.S. Army Engineer Research and Development Center (ERDC) under the purview of the Environmental Laboratory (EL). Funding was provided under a Military Interdepartmental Purchase Request, number W38XGR92578260.

This report was prepared by Mr. Steven L. Ashby, Dr. Carlos E. Ruiz, and Dr. Patrick N. Deliman, Environmental Processes and Effects Division (EPED), EL. Preparation of this report was under the general supervision of Dr. Richard E. Price, Chief, EPED, and Dr. John W. Keeley, Director, EL.

Dr. Lewis E. Link was Director of ERDC and COL Robin R. Cababa, EN, was Commander of ERDC during the conduct of this study.

This report should be cited as follows:

Ashby, Steven L., Ruiz, Carlos E., and Deliman, Patrick. (2000). "Supplemental water quality analysis—St. Johns Bayou and New Madrid Floodway," ERDC/EL SR-00-7, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Summary

A supplemental assessment of water quality data was conducted to describe potential impacts on water quality in the St. Johns Bayou and New Madrid Floodway as a result of the proposed flood control project. Existing water quality data from Federal and state resource agencies and literature-based information on land use effects on water quality were compiled for evaluation. Results of this evaluation were used to describe water quality conditions and, in conjunction with land cover and hydrology information, the relative transport/retention of selected materials associated with various hydrologic events based on selected surface water elevations. Specific issues addressed included evaluation of (a) the effects of hydrologic changes on water quality for both the area impacted by the proposed project and in relationship to the overall water quality of the Mississippi River, (b) the effects on water quality associated with potential changes in pesticide use, and (c) the effects of proposed groundwater supplement on Big Oak Tree State Park.

This approach was presented to representatives from the U.S. Army Corps of Engineers, Memphis District, the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, and the Missouri Department of Natural Resources. Spreadsheet calculations were used to conduct mass balances to assess relative impacts with and without the project. Rationale for suggested input into the spreadsheets was presented to representatives from Federal and state agencies prior to application.

Additional water quality data collection included recently collected data in the immediate vicinity of the study area and allowed a broad assessment of water quality conditions. Water quality in the area reflects conditions typical for basins where agriculture is the dominant land use. In general, nutrient concentrations (with the exception of phosphorus) were not excessively high except during periods of elevated flow, and basin concentrations were not substantially different than observations for the Mississippi River. Sediment concentrations were generally lower than concentrations in the Mississippi River and increased with runoff as expected. With the exception of a few occasional high concentrations of nitrates, groundwater quality was acceptable, although phosphorus concentrations in groundwater were generally higher than in surface waters. Point sources were the most notable sources of extremes (high nutrients or low dissolved oxygen concentrations).

Potential changes in pesticide usage and impacts on water quality were evaluated with an assessment of potential changes in cropping practices, a literature review of herbicide transport research, and an assessment of pesticide data compiled in the data retrievals. In general, pesticide concentrations were relatively low in surface and subsurface waters, and water supply concentrations were below water quality criteria for drinking water.

General conclusions are summarized below. Water quality with the project alternative should be similar to conditions that exist during periods of no flooding. Material processing should be similar between existing conditions and the alternative project as well. The basin most likely retains or removes material from headwaters and floodwaters; this process is maximized during low-water periods and is comparable with the alternative project. The addition of over 9,500 acres of restored wetlands should provide for additional water quality improvements.

The impact of pesticides, atrazine in particular, on public groundwater resources is expected to be minimal. Furthermore, the impacts to shallow water resources, i.e., private wells, are also expected to be minimal. A greater potential exists for atrazine contamination to surface waters. The optimal method for reducing this likelihood is the implementation of Best Management Practices (BMPs). It is a feasible assumption that through adoption of BMPs, in combination with monitoring efforts, that atrazine contamination to water resources can be maintained below drinking water standards.

Impacts to the water quality of the Mississippi River with the proposed or alternative project in place are not expected to be discernible, due to the overwhelming volume of water in the Mississippi River relative to floodwater volume in the project area. Mass balance estimates indicated that impacts to material loads of the Mississippi River are less than 0.1 percent for moderate flows with the project.

Potential impacts to Big Oak Tree State Park with the project are likely to be associated with a decreased supply of sediments and the associated sustainability of the site. Historical alterations in the flow regime associated with the development of agriculture in the area during the 20^{th} Century has been suggested as a major mechanism contributing to the decline at the park. The use of groundwater to restore a flooding regime more conducive to the sustainability of the park is suggested and the impacts of reduction in material supply (e.g. sediments) can be lessened with the use of surface water when available. A comparison to bottomland hardwood areas in the St. Johns Basin (which have been isolated from floods) should be considered to further identify the potential for impacts at Big Oak Tree State Park. Iron concentrations near the park were similar for surface-water and well-water sites, and the change in source water would not alter concentrations currently provided to the site. Analysis of iron data indicated that the potential for iron toxicity to native vegetation is low.

Conversion Factors, Non-SI to SI Units of Measurement

Multiply	Ву	To Obtain
acre-feet	1,233.489	cubic meters
acres	4,046.873	square meters
cubic feet	0.02831685	cubic meters
feet	0.3048	meters
feet per mile	0.19	meters per kilometer
pounds (mass) per acre	0.000112	kilograms per square meter
tons (2,000 pounds, mass)	907.1847	kilograms per square meter

1 Introduction

The St. Johns Bayou and New Madrid Floodway project was authorized for construction by the Water Resources Development Act of 1986 (PL 99-662). The project will close the gap in the Mississippi River levee in New Madrid, Mississippi, and Scott Counties in Missouri. The primary purpose of the project is to provide flood control in the St. Johns Bayou Basin and the New Madrid Floodway. The project is designed to eliminate the physical and economic barriers created by frequent flooding in East Prairie, Missouri, and the surrounding area. The project includes channel enlargements and a 1,000-cfs¹ pumping station for the St. Johns Bayou Basin and closure of a 1,500-ft gap in the levee and a 1,500-cfs pumping station in the New Madrid Floodway. Three alternatives have been described in detail including without project conditions, the project as authorized, and an alternative that avoids and minimizes impacts, which is the recommended plan. Complete details of the project are provided in the Draft Supplemental Environmental Impact Statement (SEIS) (U.S. Army Corps of Engineers, Memphis District 1999).

Areas of controversy during the review process included potential impacts on the hydrology and water quality associated with closure of the 1,500-ft gap in the levee and are described in detail in the SEIS. Water quality concerns with the constructed project include potential impacts of changed hydrology on material transport into and out of the project area, change in pesticide/herbicide application associated with potential changes in agricultural land use, and impacts to Big Oak Tree State Park, which would no longer receive periodic floodwaters from the Mississippi River. Concerns about material transport were centered around the potential loss of wetland functions that improve water quality of floodwaters and the relationship of this potential loss to the overall water quality of the Mississippi River and the hypoxic zone in the Gulf of Mexico. Concerns associated with pesticide/herbicide applications included potential increased concentrations in surface and drinking water supplies associated with increased application. The change in hydrology may accelerate the decline of unique old growth bottomland hardwood forests at Big Oak Tree State Park due to inadequate hydroperiods (Larson, Journet, and Taylor 1992). The project includes opportunities to modify the hydrology at Big Oak Tree State Park with supplements from groundwater wells, but concerns over changes in water quality, particularly elevated iron concentrations, have been expressed.

Chapter 1 Introduction 1

 $^{^{1}}$ A table of factors for converting U.S. customary units of measurement to metric (SI) can be found on page x.

Water quality studies in 1978 and sediment analyses in 1979, conducted by the Corps of Engineers and summarized in the SEIS, did not fully address these concerns.

The objective of this study was to compile sufficient water quality data to evaluate the above concerns relative to the three project alternatives. Specific objectives included:

- Describe the general water quality in the project area with the most recent available data.
- Qualify the effects of hydrologic changes on water quality for both the area impacted by the proposed project and in relationship to the overall water quality of the Mississippi River.
- Determine the potential effects on water quality associated with potential changes in pesticide use.
- Determine the effects of proposed groundwater supplement on Big Oak Tree State Park.

2 Chapter 1 Introduction

2 Methods

Water quality data and the potential for project impacts on water quality were assessed by compilation of existing data, evaluation of applicable water quality constituents, and an assessment of potential impacts based on relative changes in mass associated with representative hydrologic conditions with and without the project. In order to describe potential relative changes in mass of selected water quality constituents, a literature review was conducted to describe general conditions of nutrient transport for wetlands and agricultural lands. Processing (i.e., retention or transport) of constituents was then estimated based on general expected flux of material.

This approach was initially presented to representatives from the U.S. Army Corps of Engineers, Memphis District, the U.S. Environmental Protection Agency (EPA), the U.S. Fish and Wildlife Service (FWS), and the Missouri Department of Natural Resources (MDNR). These representatives, and others as mentioned in the following, provided comments and input into the development of the methods used to describe water quality impacts in the study area.

Water Quality Assessments

Data collection included a retrieval of water quality data from EPA's Storage and Retrieval System (STORET), and data requests from the University of Missouri Agricultural Research Extension Service, the U.S. Geological Survey (USGS), MDNR, and the U.S. Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS). Data sources are listed in Appendix A. Data retrieved from sources other than STORET were compared to STORET data to ensure that data were not duplicated. Results of data retrievals were compiled into a database (Appendix B) for subsequent analyses.

Water quality data from the retrievals and data requests were grouped into surface water, well water (groundwater), or effluent discharge or point source data. Water quality data assessments focused on nitrogen, phosphorus, carbon, suspended sediments, iron, and selected herbicides and insecticides. Additional water quality constituents were retained in the database. Summary statistics such as minimum, maximum, mean, and variance were calculated for selected water quality constituents in the database. Monthly temporal variability was assessed using graphical displays of data for selected water quality constituents. Stations with unrealistically high data were excluded during data analyses.

Evaluation of Project Impacts on Water Quality

Land cover data is available from the Memphis District and is summarized in the SEIS. The data consists of acres of specific land cover types by elevation at 1-ft contours. Areas for specific elevations used in this evaluation are presented in Tables 1 and 2. Hydrology information is also available from the Memphis District and is summarized in the SEIS. Data include acreage of areas inundated at 1-ft elevation contours, flood frequency information, discharge information, and volumes of water at 1-ft elevation contours. Hydrologic and land cover data were used in conjunction with water quality data to conduct mass balances for various scenarios associated with the project. A spreadsheet was developed to calculate expected loads under various scenarios. Scenarios used volumes and acres of land cover type at selected elevations. Material processing estimates were then calculated using expected loads and wetland function factors to yield a value, referred to as a wetland function value. Wetland function factors may be defined as an approximation of the material that is retained by the land cover (i.e. removed from the floodwater) or is transported from the land cover to the floodwater. The net yield, or load, was compared to the total available load, and the percentage that was transported or retained, referred to as the watershed function, was used for a relative comparison between scenarios.

Five hydrologic scenarios based on elevations were considered (Table 3). Scenario 1 describes existing conditions without any flooding. Scenario 2 describes conditions associated with the authorized project. Scenario 3 describes conditions associated with the alternative (avoid and minimize). Scenario 4 describes conditions representing an infrequent, major flooding event associated with an elevation of 300 ft. Scenario 5 describes conditions representing a more frequent flooding event associated with an elevation of 290 ft for both basins. The approach was applied separately to the St. Johns Bayou area and the New Madrid Floodway. Hydrology information for November through May was used and two seasons were described for Scenarios 2 and 3 based on proposed changes in the inundation due to flooding. Increased inundation from watershed inputs, associated with proposed changes to winter waterfowl habitat, was used for season 1 (November - January). Decreased inundation as a result of evacuation of watershed input and prevention of backwater flooding from the Mississippi River associated with the proposed project was used for season 2 (February - May).

Calculations in season 2 (for both Scenarios 2 and 3) for both basins assume that backwater flooding retained for waterfowl (season 1) will be partially removed via pumping/gravity flow and Mississippi River water will be allowed to enter into the project level to some extent. The concentration used in the spreadsheet reflects an expected value based on a review of existing water quality data for both water sources (Mississippi River and Headwater). Wetland functions were calculated on acreage for an elevation of 280 ft during season 2.

Loading estimates were calculated in the spreadsheet for each scenario using estimated concentrations for two sources of floodwater (i.e., the headwaters and Mississippi River water) derived from the database and wetland function factors. A literature review was conducted to develop general ranges of wetland water

quality functions and export coefficients for runoff from upland and agricultural lands. Discussions with a water quality specialist with the USGS and agricultural experts at the University of Missouri Delta Research Center were also conducted to provide input into the development of function factors used in the spreadsheet.

Wetland function factors were developed for two general types of land covers, (a) those that are described as wetlands, and (b) upland and agricultural lands that are flooded. The first step in assigning a wetland function factor was to determine if the land cover would generally remove materials from the floodwater or export to the floodwater more material than it retained. A negative value was assigned for net removal and a positive value was assigned for net export. As an initial classification, land covers that can be considered as wetlands (cypress/tupelo, scrub/shrub marsh, marsh, bottomland hardwood, riparian, sandbars, open water, and rivers) were assigned a negative function factor for each constituent (except for carbon as described below). Upland and agricultural lands, when flooded, were considered to remove material via sedimentation but also to export material via perturbations to the land associated with farming practices and crop type for a positive net export. Rationale for wetland function factors and export coefficients used in this analysis are described in the following paragraphs and were distributed to representatives from the Memphis District, MDNR, FWS, USGS, and EPA.

Overview of Water Quality Processes in Wetlands

General information on the impacts of wetland hydrology and wetland type was used to assign wetland function factors, although it is recognized that responses in material cycling are often quite variable. For example, wetlands subjected to different flooding regimes provide a different response for some processes. Litter decomposition can be slightly higher in manipulated (pumping) areas than in natural and impounded wetlands (Conner and Day 1991). In natural and impounded areas, nitrogen was immobilized during spring and summer but mineralized in the manipulated area during the same period (Conner and Day 1991). Phosphorus was not immobilized in the natural and impounded area but was mineralized at a slower rate than in the managed area (Conner and Day 1991). The general conclusion was that burial, or net accumulation of organic matter, nitrogen, and phosphorus, was more prevalent in stagnant, more flooded areas, and mineralization and/or export was greater for the managed areas. Significant removal of nitrogen has been observed for alluvial floodplains (Brinson, Bradshaw, and Kane 1984) and forested wetlands (e.g., bottomland hardwoods in the Atchafalaya Basin flooded for 67 days, Lindau, DeLaune, and Pardue 1994). Removal of total phosphorus by various types of wetlands can also be significant. Kadlec (1997) observed a 94 to 99 percent reduction in total phosphorus concentrations in wastewaters that were subjected to wetland treatments. Often, removal may be attributed to sedimentation of particulate phosphorus, which can be the dominant phase (Lindau, DeLaune, and Pardue 1994). However, relationships of small upland wetlands to the watershed can be highly variable depending on watershed conditions and runoff events. In a watershed that is primarily pasture for sheep grazing, the receiving wetland retained 23 percent of the nitrogen and 38 percent of the phosphorus entering the

system (Raisin 1996). Sediment retention is also highly variable and averages about 30 percent of the total entering with a maximum retention of about 95 percent (numerous studies summarized in Adamus et al. 1991).

In riparian zones, denitrification is also an important removal process (Pinay and Decamps 1988). Nitrate loss in riparian zones can be as much as 50 to 100 percent in headwater streams with only 15 percent removal associated with sediments (Cooper 1990). As observed for other wetland types (Raisin 1996), retention function of riparian buffers varies with width and frequency of gaps (Weller, Jordan, and Correl 1998).

In open water systems and rivers with sandbars, nitrogen and phosphorus removal processes are also occurring but probably to a lesser extent than in vegetated wetland systems such as marshes, swamps, and bottomland hardwoods. More variable hydrologic regimes in the latter systems would tend to increase the transport of materials and result in higher removal rates.

Results of intensive studies conducted in the Cache River system in northeastern Arkansas provide relative information on wetland processes for a system in the immediate vicinity of the study area and may be used to provide better estimates of wetland function factors. For example, DeLaune et al. (1996) measured nitrate reductions between 59 and 82 percent, which are consistent with studies described above. Conversely, Dortch (1996) estimated removal efficiencies of 29.5 percent for inorganic suspended solids, 21.4 percent for total nitrogen, and only 3 percent for total phosphorus. These values are probably lower than would be expected in the study area since they were calculated for a flow-through system and represent annual conditions. However, backwater flooding of bottomland hardwood systems during winter and spring may be less effective at nutrient transformation and removal since biological activity is greatly reduced during these seasons (Harris and Gosselink 1990) and estimates from Dortch (1996) may not be that low. Kleiss (1996) estimated a 14 percent decrease in suspended sediment load, which is also lower than would be expected for the study area due to the anticipated hydrology of a gradual flooding and dewatering. However, review of the 1993 flood data for the Mississippi River upstream of the study area (Holmes 1993) indicated that there was little sedimentation in the backwater areas downstream of St. Louis, MO, and a decrease of only 10 to 20 percent may be reasonable.

Wetland function factors for wetland land covers were estimated from the above information, in consultation with wetland experts when possible, and were reviewed by representatives from the Memphis District, EPA, FWS, and MDNR (Table 4). In general, the wetland function factor is an estimation of the percentage of mass of the constituent (nitrogen, phosphorus, carbon, and sediment) that will be retained by (including removal) or transported to the system. This value is usually measured from a mass balance approach and accounts for material already in the land cover. Vegetated wetland types were considered to be similar in removal efficiencies and more efficient than nonvegetated or sparsely vegetated types (e.g., open water, rivers, and sandbars). Values assigned were based on estimates from references noted in Table 4. Values for wetland types where little information was available were assigned

relative to values used for cypress/tupelo systems. For many of the land covers, carbon was assumed to be converted to dissolved forms and easily transported, so a positive function factor is suggested. Observations in bottomland hardwood systems in Mississippi (Ashby et al. 1991) and other systems (Harris and Gosselink 1990) support this assumption.

Estimation of Upland and Agricultural Export Coefficients

Wetland function factors or export coefficients for periodically flooded upland and agricultural land covers have not been developed. Consequently, consideration of material from two sources, (a) material available for export from the land (traditionally measured as export coefficients), and (b) removal from or export to the floodwaters (such as processes observed for wetlands), is required. Export loads for nitrogen, phosphorus, sediment, and carbon were estimated using initial export coefficients (ECi) (Beaulac and Reckhow 1982; Peterjohn and Correll 1984; Lowrance et al. 1984), soil fertility measurements (University of Missouri 1996), and representative concentrations. The initial export load was adjusted to account for changes in the availability of material associated with flooding versus runoff. Based on discussions with agricultural experts in the study area, relatively low slopes in the area (1 to 2 ft/mile, Luckey and Fuller 1984), and gradual changes in stage height with flooding and receding, sediment export from the upland and agricultural land covers is expected to be relatively low. Phosphorus concentrations in the soils are relatively high (23 to >70 lb/acre) and similar by cropping options (University of Missouri 1996) but are considered to be less mobile than nitrogen due to a lower solubility. Nitrate does not attach to soil particles but remains soluble and is easily transported with water (Killpack and Buchholz 1993) both as surface flow and subsurface flow. Legume crops such as soybeans can add up to 30 to 50 lb/acre of nitrogen in the study area (Killback and Buchholz 1993) and would result in a higher export coefficient than for other crop types.

These factors were used to adjust the export coefficient (EC), and an individual load was then calculated for each constituent. The individual load for each constituent was then added to the load associated with the floodwaters for estimation of the total load available. Since estimates of loads account for processes that impact concentrations and mass, a wetland function factor of positive 1 is assigned to all upland and agricultural land covers (i.e., 100 percent of the estimated load is available for transport when the floodwaters recede). The net yield is then calculated by reducing the load associated with floodwaters by 10 percent to describe losses from sedimentation.

Nitrogen and phosphorus

Export coefficients from Beaulac and Reckhow (1982), presented in Table 5, were used to estimate initial export loads for nitrogen and phosphorus. The median value of the export coefficient was considered as the initial mass

available. Additional information reviewed is summarized in Tables 6 and 7. Land covers in the study area that were not represented by those in Beaulac and Reckhow (1982) were assigned a value from a similar land cover. Since the literature-based loads represent annual loads, the initial estimated loads are reduced by a percentage that estimates the available load during the period of flooding. It was recommended that the initial nitrogen load be reduced by 25 percent and the initial phosphorus load be reduced by 50 percent. The rationale for these reductions is based on an expected decrease in the annual export coefficient since consideration is given to the wet period only and a higher particulate phase for phosphorus than for nitrogen. Adjusted export coefficients represent the amount exported for the period of inundation.

Calculation of export coefficients for nitrogen and phosphorus for various land covers is provided below:

Herbaceous Vegetation

Nitrogen –	Range 2-7 kg/ha/year ECi = 2.5 kg/ha/year
Suggested value for EC = $2.5 \text{ kg/ha/year} \times 0.75$	= 1.875 kg/ha
Phosphorus –	Range 0 – 0.8 kg/ha/year ECi = 0.2 kg/ha/year
Suggested value for EC = $0.2 \text{ kg/ha/year} \times 0.50$	= 0.1 kg/ha

Pasture

Nitrogen –	Range 2 - >3000 kg/ha/year ECi = 5 kg/ha/year
Suggested value for EC = 5 kg/ha/year \times 0.75	= 3.75 kg/ha
Phosphorus –	Range 0 – 5 kg/ha/year
Suggested value for EC = $0.8 \text{ kg/ha/year} \times 0.5$	ECi = 0.8 kg/ha/year 0.5= 0.04 kg/ha

Cotton

Nitrogen - Based on estimates for row crops	Range 2 – 80 kg/ha/year ECi = 9 kg/ha/year
Suggested value for EC = $9 \text{ kg/ha/year} \times 0.75$	= 6.75 kg/ha
Phosphorus – Based on estimates for row crops	Range 0.2 – 18.6 kg/ha/hr ECi = 2.2 kg/ha/year
Suggested value for EC = $2.2 \text{ kg/ha/year} \times 0.5$	= 1.1 kg/ha

Cotton/soybean

Cotton/soybean	
Nitrogen – Export expected to be high since	Range $2.5 - 41.5$ kg/ha/year
soybeans are nitrogen fixers. Based on	ECi = 13: kg/ha/year
estimates for mixed agricultural	
-	

Suggested value for EC = $13 \text{ kg/ha/year} \times 0.75 = 9.75 \text{ kg/ha}$

Phosphorus – Based on estimates for mixed agricultural	Range 0.2 – 3.2 kg/ha/year ECi = 1 kg/ha/year
Suggested value for EC = 1 kg/ha/year \times 0.5	= 0.5 kg/ha
Soybean Nitrogen – Export expected to be high since these are nitrogen fixers. Based on estimates for mixed agricultural and nitrogen fixation	Range 2.5 – 41.5 kg/ha/year ECi = 20 kg/ha/year
Suggested value for EC = $20 \text{ kg/ha/year} \times 0.75$	= 15 kg/ha
Phosphorus – Based on estimates for row crops	Range 0.2 – 18.6 kg/ha/hr ECi = 2.2 kg/ha/year
Suggested value for EC = $2.2 \text{ kg/ha/year} \times 0.5$	= 1.1 kg/ha
Soybeans/corn Nitrogen – Export expected to be high since soybeans are nitrogen fixers. Based on estimates for mixed agricultural	Range 2.5 – 41.5 kg/ha/year ECi = 13 kg/ha/year
Suggested value for EC = $13 \text{ kg/ha/year} \times 0.75$	= 9.75 kg/ha
Phosphorus – Based on estimates for mixed agricultural	Range 0.2 – 3.2 kg/ha/year ECi = 1 kg/ha/year
Suggested value for EC = 1 kg/ha/year \times 0.5	= 0.5 kg/ha
Corn Nitrogen - Based on estimates for row crops $Suggested value for EC = 9 kg/ha/year \times 0.75$	Range 2 – 80 kg/ha/year ECi = 9 kg/ha/year = 6.75 kg/ha/year
Phosphorus – Based on estimates for row crops $Suggested\ value\ for\ EC=2.2\ kg/ha/year\times0.5$	Range 0.2 – 18.6 kg/ha/hr ECi = 2.2 kg/ha/year = 1.1 kg/ha

Carbon

Carbon transport was considered to occur primarily as dissolved organic carbon since there is a considerable amount of tillage and burning of residue which would greatly reduce the export of particulate organic carbon. Export of carbon was based on dissolved carbon concentrations, soil fertility measurements, and export coefficients. Organic matter content in the study area ranges from 1 to 3 percent (University of Missouri 1996). Runoff coefficients for individual land covers were not available and estimates from Peterjohn and Correll (1984) were highly variable, 58.2 ± 61.3 . A winter value of 3.6 kg/ha

(Peterjohn and Correll 1984) was considered representative and an adjustment to account for land cover was not applied.

Suggested value for EC

= 3.6 kg/ha

Sediment

Export of sediment was based on suspended sediment concentrations (USGS data and STORET data) and reported daily loads (Holmes 1993). Sediment retention during inundation was estimated to be 10 percent since there is little evidence of sediment deposition following flooding in the study area. Suspended sediment concentrations were highly variable and ranged from 45 to 451 mg/L. Holmes (1993) reported a mean daily concentration of 317 mg/L and median daily load of 717,000 tons/day for the 1993 flood (measured in the Mississippi River at Thebes, IL). Corresponding values of 302 mg/L and 139,000 tons/day were presented for the period of record. These concentrations were somewhat higher than concentrations observed in the headwater region (e.g., USGS data from Morehouse, station 7024070); therefore, instantaneous sediment loads were estimated at 4.63 kg/sec based on concentrations and discharge measurements. A 60-day period of rain was used to calculate the total load which was then divided by the total area (184,855 ha) to estimate the initial export coefficient.

Suggested value for EC

= 130 kg/ha

After discussions with FWS personnel and agricultural experts, it was determined that export coefficients for with- and without-project scenarios were better representations of conditions if transport from the system prior to inundation (existing conditions) was considered. Under existing conditions, rainfall in November and December can result in high runoff or export. With the project in place, this same period results in retention of rainfall and a decrease in export. Therefore, export coefficients for Scenarios 2 and 3 that describe with-project conditions were further reduced by 50 percent to account for decreased loss associated with decreased runoff prior to inundation. Material retained or transported in the upland or agricultural land covers was then calculated in the spreadsheet using the following equations. Appropriate conversions were made to express mass in kilograms and runoff in kilograms per acre.

$$V_{lc} = (A_{lc}/A) \times V \tag{1}$$

where:

 V_{lc} = volume of land cover when inundated

 A_{lc} = area of selected land cover at the selected elevation, acres

A = total area at the selected elevation, acres

V = volume provided at selected elevation, acre-ft

10

$$Load = C \times V_{lc} \tag{2}$$

where C = concentration. This load is applied to land covers described as wetlands.

Or:

Load =
$$(C \times V_{lc}) + (A_{lc} \times EC)$$
 { $EC = EC \times 0.5$ for Scenarios 2 and 3} (3)

This load is applied to land covers described as upland or agricultural lands and includes the load from floodwater in addition to material exported from the land.

Wetland Function Value (expressed as a net load) = Load × Wetland Function Factor (4)

Net Yield (for wetland land covers) = \sum (Load + Wetland Function Value) (5)

Net Yield (for upland and agricultural land covers) =
$$\sum [(C \times V_{lc}) \times 0.90] + [(A_{lc} \times EC) \times \text{Wetland Function Factor}] (6)$$

The calculation assumes a 10 percent reduction in the load from inundation due to sedimentation. Separate loads, due to inundation, are added for scenarios with two hydrologic seasons (Scenarios 2 and 3) and the export from upland and agricultural lands is accounted for during season 1, which is the season when the maximum area is inundated.

The effect of the watershed on material processing (watershed function) can be expressed as a percentage of material retained or transported. Negative values indicate transport of material, and positive values indicate retention of materials.

Watershed Function =
$$[\sum(\text{Load}) - \sum(\text{Net Yield})/\sum(\text{Load})] \times 100$$
 (7)

Sensitivity Analysis

Since the wetland function factors and the export coefficients are simply an educated guess, the spreadsheet calculations were also conducted using wetland function factors at near maximum and minimum values, respectively, to define the range should each land cover function at a maximum or minimum level. To assess the sensitivity to concentrations in floodwaters, concentrations of nitrogen, phosphorus, and organic carbon from season 1 were doubled for season 2 and the analysis was recalculated for the New Madrid Floodway scenarios. Sensitivity to reductions in runoff associated with inundation was also assessed for the New Madrid Floodway scenarios by elimination of the 50 percent reduction in the available load used in Scenarios 2 and 3.

Evaluation of Project Impacts on Water Quality of the Mississippi River

Impacts on the water quality of the Mississippi River were described with evaluation of output from the spreadsheet and a water balance with discharge data from 1943 to 1974 and from 1975 to 1998 (Table 8). Limited water quality data for the Mississippi River was available from Hickman, KY, for 1969 and 1970 and from Thebes, IL, for 1994 through 1998. Data from USGS stations at New Madrid and Caruthersville, MO, were not applicable. While the data from Hickman are not very recent, and the data from Thebes represent values upstream from the confluence of the Mississippi River and the Ohio River, these data were the best available.

A mass balance approach was used to assess potential impacts of the project on the water quality of the Mississippi River. Existing conditions allow for periodic movement of water from the Mississippi River into the project area and result in mixing with headwaters in the area, transport of material to the area, and transport of material from the area. Hydrologic information provided by the Memphis District (Table 8) indicated that monthly means were highly variable during 1943 to 1974 and between 1975 and 1998. Mean values of 800,000 and 700,000 cfs were considered to represent volumes that would provide floodwaters at elevations of 290 and 282 ft, respectively. A period of 5 days was considered to represent the time of inundation of a representative flood, and relative volumes of headwaters and Mississippi River waters were then calculated for the flooded area. Concentrations for nitrogen, phosphorus, organic carbon, and suspended sediments for the headwaters and the Mississippi River were then multiplied by relative volumes to determine total mass available for each volume. The expected percent removed for each basin was then applied to the total mass available in the appropriate basin, and the difference to the total mass available in the Mississippi River was then expressed as a percentage.

Evaluation of Potential Changes in Pesticide Usage on Water Quality

A literature review was conducted to describe the transport of herbicides in surface and subsurface drainages in the region. Potential changes in pesticide use and pesticide impact on water quality were also evaluated based on existing water quality data for current conditions (current practices and existing acreage) and the qualitative extrapolation of potential increase in pesticide usage due to the project. Identification of the potential pesticide impact using the spreadsheet analysis was considered to be inappropriate since there were limited measurable concentrations in the study area. Experts at the University of Missouri Delta Research and Extension Service were consulted on potential changes in crops, pesticide application rates, and pesticide interactions with crop types and soils.

Data used to assess pesticide concentrations in the project area were extracted from the STORET retrieval database. Data from the USGS National Water-Quality Assessment (NAWQA) study and well-water data from the USDA

NRCS were also evaluated. Summary statistics for water quality data from surface sites are presented in Appendix B for detected pesticides. Pesticide data from the NRCS study and the NAWQA data (Morehouse and Rives stations) are included in Appendix B. Records from public drinking supplies in the area were also evaluated. Parameters with measurable concentrations at Morehouse were evaluated for application rates using distribution maps from the NAWQA Pesticide National Synthesis Project available at http://water.wr.usgs.gov/pnsp.

Evaluation of Potential Impacts to Big Oak Tree State Park

A mass balance approach was used to assess potential impacts of the project on the water quality that provides periodic flooding to Big Oak Tree State Park. Existing conditions, which allow for periodic movement of water and materials from the Mississippi River into and out of the area, would be prevented with the project. Periodic flooding with well water would be conducted to provide controlled hydrology to the area, but changes in water quality would occur as a result in changes in source water. Estimated concentrations for nitrogen, phosphorus, organic carbon, and suspended sediments for the headwater and groundwater were multiplied by relative volumes to determine total mass available for each volume. The change in mass was then expressed as a percentage for each constituent. Potential impacts of iron toxicity were evaluated with an assessment of iron concentrations in surface water and groundwater and a review of relative literature.

3 Results

Data in the original STORET retrieval represented 217 sites, but evaluation of the sites resulted in elimination of sites to a base of 89. Most of the sites eliminated were in the vicinity of Reelfoot Lake, TN, and were not considered to be representative of the study area. Data from 10 sites in Kentucky and 10 sites in Tennessee were retained since evaluation indicated that they were from the same aquifer, same ecoregion, or in the Mississippi River (Figure 1). Data collected ranged from 1969 to the present. Data recently collected (1994 through 1998) at Morehouse and Rives as part of the NAWQA program were also used. Summary statistics for water quality data from surface sites are presented in Appendix B and summarized in Table 9 for selected constituents. Water quality concentrations for selected constituents are depicted in Figures 2-14. Mean values are presented in Table 10. Concentrations used in the spreadsheet (Table 11) were also provided to other agencies for review and comment prior to use in the spreadsheet. Data for surface water sites were used to establish estimated concentrations used in the spreadsheet. Limited data were available for the Mississippi River (Hickman, KY) in the immediate vicinity of the project. Consequently, comparisons to headwater concentrations and other relationships as described for each constituent in the following were used to determine representative concentrations for the Mississippi River.

In general, water quality constituents represented the various sources of water, e.g., streams, effluents, or groundwater (wells); however, temporal trends in water quality were discernible for selected constituents. Dissolved oxygen concentrations were generally above 6 mg/L and near 12 mg/L in the winter and describe conditions in streams (Figure 2). The relatively low values observed in December and February were measured at well sites and are not indicative of surface water concentrations. Biochemical oxygen demand (measured as a 5-day demand, BOD₅) values were relatively low except for measurements in September and October, which ranged from near 2 to near 50 mg/L (Figure 3). All BOD₅ values reported were measured at effluents. Additional point source data (not in STORET) were available from MDNR and were limited to evaluations in the vicinity of the Sikeston and Charleston Municipal Wastewater Treatment Facilities. In general, these studies concluded that BOD and suspended solids in the effluents were often at or above permit values, which is consistent with other observations.

Nitrate/nitrite values were mostly below 2 mg/L in surface-water samples with effluent concentrations occasionally above 2 mg/L (Figure 4). Slightly higher values (between 2 and 4 mg/L) were observed in surface waters in

December of 1992 and at an effluent in September of 1976. Extremely high values observed at an effluent in May indicate anomalous data, which were not used in the data assessment. Organic nitrogen values were generally lower than nitrate/nitrite values (as suggested by concentrations observed at the Morehouse station) but limited data were available (Figure 5). Concentrations observed at the Morehouse and Rives stations were comparable to observations from the STORET retrieval. Seasonal trends in nitrogen concentrations were not apparent in the surface water samples.

Phosphorus concentrations were quite variable and total concentrations were relatively high with values often occurring greater than 0.1 mg/L (Figures 6 and 7). Dissolved phosphorus values were less variable than total phosphorus values and mostly remained near 0.05 mg/L. As observed for nitrogen species, concentrations of total phosphorus observed at the Morehouse and Rives stations were comparable to observations from the STORET retrieval, and seasonal trends were not apparent.

In general, evaluation of the limited data for nitrogen species suggested that total concentrations in the headwater were near 1.5 mg/L and concentrations in the Mississippi River may be lower (based on comparison of organic nitrogen concentrations (0.41 and 0.12 mg/L, respectively)). A value of 1.2 mg/L was recommended as an approximate concentration for total nitrogen in the Mississippi River. This value is within the range for various nitrogen forms observed at Thebes, IL (Appendix B), but was lower than most forms during November through March when flooding would be expected to occur. Mean total phosphorus concentrations (0.21 mg/L) were also higher in the headwater (consistent with soil fertility information) than in the Mississippi River (0.14 mg/L). Data from Thebes, IL (Appendix B), indicate that values between 0.1 and 0.2 mg/L can be expected for total phosphorus for the flood period.

Limited data for three wells in the project area provided by NRCS for 1997 through 1999 (July through September) indicated that nitrate concentrations were relatively low, i.e. <1 to 2 mg/L except for July 1988 observations at two sites that were greater than 10 mg/L. When values from STORET were included, median values of nitrate/nitrite concentrations in well water (0.22 mg/L) were lower than median values for surface waters (0.33 mg/L). Total phosphorus values reported for well water were relatively high (0.13 to 3.01 mg/L) and reflect high soil fertility in the area. Median values of total phosphorus in well water (0.44 mg/L) were higher than median values in surface water (0.167 mg/L). A more detailed comparison of concentrations in surface water and well water is presented later in this section.

Evaluation of the data for carbon indicated that most of the carbon is dissolved organic carbon, and measured values were often quite higher than observations of total carbon except at effluent sites (Figures 8 and 9). Lower concentrations of organic carbon were observed primarily in the fall season from September through November. A value of 4 mg/L of organic carbon was recommended for both the headwater and the Mississippi River. This value is comparable to values observed at Thebes, IL (Appendix B).

Evaluation of solids data indicated that suspended solids accounted for approximately 58 percent of the total residue in the headwater area (Figures 10 and 11). This relationship was used to calculate a value of 260 mg/L for the Mississippi River, which is within the range observed for data collected at Thebes, IL (Appendix B). Seasonal trends in total solids were not apparent, but suspended solids tended to be lower from late summer to mid-winter (August through January).

Limited discharge data were available for the project area, but data from the Morehouse and Rives sites may be used to describe general trends in runoff. In general, minimum discharge values were observed during the period August through November, although values at Rives were quite variable (Figure 12). Periods of lower discharge correlated with observations of lower concentrations.

Total and dissolved iron values were assessed to describe surface- and well-water concentrations to evaluate potential changes in concentrations associated with changing source water to Big Oak Tree State Park. With the exception of anomalous data, which were not included in the data analysis, concentrations in the surface waters were relatively similar to concentrations in well water (Figures 13 and 14), and higher concentrations in wells occurred primarily in Pemiscot County (Figure 15). In general, lower concentrations were observed in the late summer (August) and through mid-winter (January). Concentrations were mostly <1 mg/L and 3 mg/L, for dissolved and total iron, respectively.

Distribution of concentrations of total phosphorus, nitrate and nitrite nitrogen, organic nitrogen, ammonia, total Kjeldahl nitrogen, conductivity, and total alkalinity by water sources are presented in Figures 16-22. Total phosphorus concentrations for each water source are depicted in Figure 16. Concentrations in surface waters (STORET and NAWQA data) ranged from 0.026 to 0.89 mg/L with a mean value of 0.206 mg/L, and from 0.12 to 3.01 mg/L with a mean value of 0.684 mg/L in groundwater (wells from STORET and Mississippi and New Madrid Counties). Groundwater concentrations were more variable than surface-water concentrations. Median values of total phosphorus were 0.21 and 0.44 mg/L for surface water and groundwater, respectively. Nitrate concentrations were compiled were similar between water sources except for some elevated values observed in Mississippi County (Figure 17). In general, mean groundwater concentrations were greater than mean surface-water concentrations, but median values for groundwater (0.22 mg/L) were lower than median values for surface waters (0.31 mg/L). Limited data for concentrations of organic nitrogen indicated that the mean concentration in groundwater was higher than for surface water, but median values were lower as observed for nitrate concentrations (Figure 18). Distribution of ammonia nitrogen values indicated that surface-water values were lower than groundwater values, and median values were lower than mean values with most values less than 0.5 mg/L (Figure 19). Concentrations of total Kjeldahl nitrogen were available for surface waters and were generally less than 0.5 mg/L, but observations at NAWQA stations in the mid-1990s indicated occasional elevated concentrations between 1.5 and 3.5 mg/L (Figure 20). When mean and median values for nitrogen species (nitrate, ammonia, and organic nitrogen) are summed and compared between surface water and groundwater, mean groundwater concentrations are

approximately 3.9 mg/L and greater than mean surface-water concentrations of approximately 1.3 mg/L. However, comparison between summed median values are quite comparable (0.6 and 0.7 mg/L for surface water and groundwater, respectively).

Conductivity and total alkalinity data were also compared between water sources, but different methods for measuring conductivity make comparisons difficult. For example, data in STORET included field measurements and laboratory measurements while groundwater data from NRCS was reported as field measurements (Figure 21). In general, mean and median field measurements were lower than lab measurements (except for groundwater medians) and comparable between water sources. Data from groundwater sites in STORET and New Madrid County were the most variable. Total alkalinity data were only available from STORET. Mean and median groundwater values (near 200 mg/L as CaCO₃) were nearly twice surface-water values (near 110 mg/L as CaCO₃), although groundwater values were more variable (Figure 22).

Spreadsheet Analyses

Results of the spreadsheet analyses are summarized in Tables 12 and 13. All outputs are included in Appendix C, and results are summarized in Figures 23-30. In all scenarios, there was a net retention or removal of material from the water column, indicating that the basins do retain material. The expected net retention varied for each constituent between scenarios and basins; however, a general pattern was discernible. In general, Scenario 3, with the project alternative (avoid and minimize), yielded results similar to existing conditions with no flooding (Scenario 1). The project as authorized (Scenario 2) resulted in lower retention than Scenarios 1 and 3 but greater retention than Scenarios 4 and 5 (extreme and moderate high flows, respectively). Greater differences in net retention were observed for nitrogen and sediment. Relatively minor differences were observed between scenarios for organic carbon.

Sensitivity analyses using different export coefficients and concentrations in Scenarios 2 and 3 resulted in very little differences in the percent material retained. High and low retention factors applied to all scenarios resulted in very little difference between scenarios in net retention.

Evaluation of Project Impacts on Water Quality of the Mississippi River

Potential impacts on the water quality of the Mississippi River are summarized as percent decreases in material loading to the river relative to a moderate high flow event (Scenario 5) and with the alternative project (Scenario 3) in Table 14. In both Scenarios 5 and 3, the percent decrease in the material load for each constituent evaluated was 0.1 percent or less. This is consistent with water balances conducted for the project that indicated a ratio of

basin water (22,840 cfs/day) to Mississippi River water with basin water (22,840 cfs/day + 4,000,000 cfs/day) equal to 0.0057. These values are indicative of a moderate high flow event.

There is a potential for a reduction in the transport of material from the study area to the Mississippi River with a change in the flooding period to early winter with the project in place. This change in hydrology should reduce the transport of particulate material from fallow agricultural lands, although an increase in soluble material could occur with inundation. Conversely, a reduction in the backwater flooding of Mississippi River water would result in a decrease in the retention of material from the river that would be processed during flooding. Based on the above water and material balance, it seems reasonable that the change in material processing with and without the project would not be discernible.

Evaluation of Potential Changes in Pesticide Usage on Water Quality

Based on information provided by the University of Missouri Delta Research and Extension Service, it is estimated that 95 percent or more of the corn in the project area will be treated with atrazine at a rate of approximately 2 lb active ingredient per acre (ai/acre). Post-emergence application will be applied to approximately 75 percent and pre-emergence treatment rates will be between 1 and 2 lb ai/acre. About 50 percent of the land receiving pre-emergence treatments will likely receive a second application between 0.5 and 1.5 lb ai/acre. Farmers use arithmetic to keep total atrazine applications below 2.5 and 2 lb ai/acre on a single application.

The literature review indicated that the potential contamination to water resources from atrazine application to corn and corn/soybean rotation is rather limited (Appendix D). The primary concern appears to be the relationship between application time and precipitation frequency. The worse scenarios for surface-water contamination are high flow events immediately following application. Groundwater concentrations appear to be the highest during low runoff precipitation events in which high atrazine rates are applied year after year at the same location. However, due to the type of soil associations prevalent in the study area, infiltration or percolation of pesticides should be of minor importance.

Public drinking supplies in Southeast Missouri (Boothill region) have little or no record of contamination from pesticides.¹ Well-water samples collected from public drinking supplies in the region have had two instances of pesticide detection, one which was attributed to contamination of the community drinking well with a lake.¹ The lake has been sampled and found positive to pesticide contamination and so has the well.

18 Chapter 3 Results

_

¹ Personal Communication. Terry Timmons, 1999, Missiouri Department of Natural Resources, Jefferson City, MO.

In general, pesticide concentrations were relatively low in the study area. The samples were for wells, and all surface samples were below the drinking water quality criteria for pesticides (Table 15). The USDA NRCS 1997-1999 well-water data showed that all pesticide samples were below detection and thus below the drinking water standards. Data are presented in Appendix B. Several pesticide concentrations, although given the nondetect (ND) flag, showed apparent concentration, a value that either was estimated by the analyst or the blank was higher that the sample analysis.

Table 16 shows pesticides in surface runoff, either dissolved in water or in the particulate form, at the Morehouse station of the NAWQA study. All the values are lower than the drinking water quality criteria for pesticides. Figures 31-39 show pesticides found at a greater frequency (more than eight times) than those at the Morehouse station (Table 16). Simazine, a corn herbicide used moderately in the project area, maximum concentration did not exceed the drinking water standards. Prometon, a triazine herbicide, was detected in multiple samples but at all times was below the drinking water standards. Atrazine, a corn herbicide used in the project area, was detected in multiple samples at the Morehouse station, and the values were over the drinking water standards in more than two-thirds of the samples. Maximum atrazine concentration was around 20 µg/L. The degradation product of atrazine (diethyl atrazine) was also detected in the NAWQA study with maximum values below 0.7 µg/L. Propoxur, Permethrin, DCPA, Silvex, and Tebuthiuron were detected in the study but were very close to the detection level and lower than the drinking water standard (if a standard is available for the pesticide).

Evaluation of Potential Impacts to Big Oak Tree State Park

Results of a hypothetical mass balance used to assess potential impacts at Big Oak Tree State Park are summarized in Table 17. Groundwater values were assumed to be lower for all constituents evaluated, and the percent change between water sources becomes a factor of concentration differences if the percentage of material retained by the park is considered to be the same for each source of water. As a result, the change in mass available to the site was estimated as 20 percent for nitrogen, 25 percent for phosphorus, 50 percent for dissolved organic carbon, and 99 percent for sediments. However, water quality assessments indicated very little differences in nitrogen and phosphorus concentrations in surface water and groundwater (Figures 16-20). Equal or higher concentrations of nitrogen and, in particular, phosphorus could also be used in the estimates, resulting in a net gain of these nutrients. For example, using a higher concentration of total phosphorus for groundwater (e.g. 0.4 mg/L, which is well within the range of observations) would result in a net gain of 100 percent of the phosphorus supplied by surface waters. The increase in mass would be primarily in the dissolved form as opposed to both dissolved and particulate (e.g. sediment-bound) forms in the surface water. These are estimates based on approximated concentrations and do not account for seasonal variations in concentrations.

Iron was identified as the major metal of concern and the potential for toxicity was specifically identified as the concern. Iron concentrations were similar for surface water and well water, and the change in source water would not alter concentrations currently provided to the site. The major difference would be in the form of iron available in the groundwater and the surface water. Typically, iron in groundwater is predominately in the reduced state (Fe²⁺, ferrous iron) since the water is void of dissolved oxygen (anaerobic) and in the oxidized state (Fe³⁺, ferric iron) in surface waters that are oxygenated unless isolated by stratification. The reduced form of iron is potentially toxic to plants via oxidation of reduced iron in the soil at the oxidized root zone and the formation of a ferric coating or plaque that may inhibit the uptake of required nutrients (Gambrell and Patrick 1978; Taylor, Crowder, and Rodden 1984). Development of these conditions in wetlands is possible and can influence species distribution (Talbot and Etherington 1987), yet some species are more tolerant to high ferrous concentrations than others in the same community (Snowden and Wheeler 1993). Taylor, Crowder, and Rodden (1984) observed maximum formation of iron plaque coincident with increased concentrations of Fe²⁺ and pH values between 3 and 4.6. Although plaque formation occurred at iron concentrations as low as 5 to 10 mg/L, there was no plaque formation when the iron was in the Fe³⁺ form and pH was greater than 4.6. The later (oxidized iron and pH > 4.6) are more likely conditions in Big Oak Tree State Park. In a survey of flora of Big Oak Tree State Park, Oskins Doolen (1984) provided a list of plants that was compared to plants used in the study by Snowden and Wheeler (1993). Although a bottomland hardwood is not a fen, and flora species would be expected to be different, several species were observed in both systems and genera common to both spanned the range of 'very tolerant,' 'semi-tolerant,' 'moderately sensitive,' and 'very sensitive' clusters used by the authors. A ferrous iron concentration of 3.8 mg/L was used as the control and concentrations of 10, 25, 50, 75, and 100 mg/L of ferrous iron were used in the study. In general, Carex spp. (sedges), Phalaris, and Ranunculus (buttercup) were considered to be very tolerant to semi-tolerant, and red clover (introduced) and goose grass and Rumex sp. were moderately sensitive to very sensitive. Most of the iron toxicity information in the literature describes grasses, shrubs, and rice; information on adult trees was not available.

4 Discussion

In general, water quality is indicative of basins that are dominated by agricultural activities. General trends observed included low to moderate nitrogen concentrations, relatively high phosphorus concentrations, moderate to high organic carbon concentrations, and low to moderate sediment concentrations. Increased concentrations of these constituents likely occur associated with runoff events. Extreme values were most frequently observed at point sources in the study area. Limited data precluded detailed statistical analyses of spatial and temporal trends, but plots of data from a variety of sites and collection periods allowed some empirical assessment. Seasonal trends were observed for some constituents, but concentration ranges were relatively narrow, suggesting that annual trends were not apparent. Spatial trends were mostly associated with point source and well-water data.

Potential impacts of the project on the water quality of the Mississippi River appear to be minimal based on the assumptions used in the spreadsheet analyses. Although this approach does not adequately describe the processing of material by each land cover, the use of relative function factors for each land cover type does allow the evaluation of scenarios with and without the project for a relative comparison since the same function factors are applied in each scenario. While more detailed process information would improve the application, the relatively low volume of water in the basin relative to the volume of water in the Mississippi River results in little impact from a mass balance perspective. Comparisons of concentrations in the two sources of water indicated relatively similar concentrations, suggesting that changes in concentrations associated with the project are not likely to be discernible. Mitsch et al. (1979) observed very little differences in spatial patterns on different floodplain sites during flooding in the Kankakee River basin in northeastern Illinois, supporting the assumption of equal concentrations in a floodway during inundation.

National studies have shown that pesticides and their transformation products are commonly present at low concentrations in groundwater beneath agricultural areas, and only seldom at concentrations that exceed water quality standards. For the five multi-state studies carried out to date, which focused mainly on agricultural areas, the proportions of sampled wells with pesticide detection ranged from 4 percent (nationwide, rural domestic wells) to 62 percent (cornand-soybean areas of the northern mid-continent, post-planting) (USEPA 1994, USGS 1995). Pesticide concentrations were 1 μ g/L or less in over 95 percent of the wells sampled during these studies (USEPA 1994).

Chapter 4 Discussion 21

Missouri water quality studies including the Management Systems Evaluation Areas, Agricultural Systems for Environmental Quality, and Mississippi Embayment programs have shown that surface-water impacts from pesticide runoff are a major concern in the state. In 1994, 10 public drinking water supplies (surface water) received notices of violation (NOV) for exceeding the Maximum Contaminant Level (MCL) for atrazine (3 µg/L) (Smith, Blanchard, and Johnson 1999). Two northern Missouri public drinking water supplies received NOVs during 1997-1998. However, there was little evidence of atrazine contamination in public drinking waters in the area, suggesting that pesticide contamination of wells is minimal. However, occasional observations of high concentrations in surface waters indicate contamination to shallow wells is possible. It is a feasible assumption that, through adoption of best management practices (BMPs), in combination with monitoring efforts, atrazine contamination to water resources can be maintained below the MCL.

The potential increase in corn acreage due to the project is 5,800 acres, or 4.4 percent of the project area (133,000 acres). A 5 percent increase in corn should not change the behavior of pesticide application and runoff, so conditions expected for increased acreage should be similar to existing conditions. The change in soybean practices from current conditions to a higher yield/longer season soybeans should not have significant water quality impacts due to the longer season. If current practices are maintained, future potential impacts should be similar to those observed in similar or current agricultural settings.

Double crops and the increase in double cropping should not have a major water quality impact in the area. Double cropping could help in minimizing the runoff potential in early spring by providing a crop cover for those months with high runoff potential. The availability of parts of the project area for double cropping should be a function of the winter storage requirements and the start of the planting season for the first crop in the double crop cycle. Pesticide requirements in double crops could be higher, but herbicide use might decrease because the first crop can decrease the germination of weeds harmful to the second crop, the cultivation in between the two crops, and the rotation of crops.

Although operation of the pumping stations to remove floodwaters may occur during the early part of the growing season, increased runoff of atrazine is expected to be minimal with anticipated application rates and practices. Exceptions could occur in very well drained areas, but since these areas comprise only a minor portion of the area, adverse impacts are not expected to occur. As mentioned previously, the use of BMPs in more vulnerable areas should be considered to further reduce the potential for adverse impacts.

The evaluation of potential impacts to Big Oak Tree State Park indicates that the nutrient supply to the system may vary by about ± 20 percent for nitrogen and between -25 and +100 percent for phosphorus with a change in source water from floodwater to groundwater. The range of change is dependent upon the concentration used in the estimates (see Table 17). Because the park is not inundated with floodwater every year, the net change in nitrogen and phosphorus to the park could be considerably less since the controlled hydrology would supply these nutrients more frequently than floodwaters. Additionally, variability

22 Chapter 4 Discussion

in surface-water and groundwater data was relatively high, and the actual change in supply of nitrogen and phosphorus is more likely to be lower if similar concentrations exist in the two sources. More profoundly, the supply of organic carbon and sediments to the site is estimated to decrease by 50 and 99 percent, respectively. These may be underestimates since the supply of particulate organic carbon will likely decrease by 80 to 100 percent, i.e., there are no organic particulates in well water. However, since bottomland hardwoods typically export dissolved organic carbon, there may be a net reduction in carbon export that would be beneficial to receiving waters. Nutrient supply associated with sediment transport will also be greatly decreased with the exclusive use of well water. However, comparison of median values in well water and surface waters indicated that the supply of nutrients from either source may be similar, but nutrients from the well water would be dissolved. The availability and retention of sediments and sediment bound nutrients to the site were not evaluated.

While the change in supply of material to the site is a potential for impact, concentrations/masses necessary for continued viability are not known and not easily determined. Also, the contribution of material during extreme events has not been evaluated and the impact of the loss of contributions during these episodic events is not clear. The impacts of potential reductions in particulate organic carbon and sediment supply to Big Oak Tree State Park are not easily quantified and comparison to internal sources is not possible with the available data.

Larson et al. (1992) suggested that the return of hydrologic regimes similar to conditions prior to extensive agricultural development (e.g., 75 years ago) was critical to the survivability of the park. If indeed the restoration of hydrology is critical and can be accomplished with supplemental groundwater, the opportunity to offset the potential reductions in sediments using surface water when available, in lieu of well water, should be considered.

The potential for iron toxicity to adversely impact the flora of Big Oak Tree State Park is considered to be minimal. Evaluation of available iron data for groundwater indicated that elevated concentrations (e.g., >10 mg/L) occurred in Pemiscot County and not in the immediate vicinity of the park. Furthermore, the introduction of reduced (ferrous, Fe²⁺) iron via artesian wells will result in a rapid oxidation to the ferric form which will be retained on the soil surface and not formed at the oxidized root zone. There will be a potential for accumulation and subsequent burial of the ferric form in a limited area around each well. The potential for iron deposition would be reduced with the use of surface water when available. The rapid oxidation of iron would also allow for collection or accumulation if the area around the well included a small detention basin or rock layer.

Chapter 4 Discussion 23

5 Conclusions

Water quality with the project alternative should be similar to conditions that exist during periods of no flooding. Material processing should be similar between these two scenarios as well. The basin most likely retains or removes material from headwaters and floodwaters; this process is maximized during lowwater periods (Scenario 1) and is comparable with the alternative project (Scenario 3). There is likely a considerable difference in the amount of material processed (amount increases with flow) but the relative processing between Scenario 1 and Scenario 3 yielded similar results.

Impacts to the water quality of the Mississippi River with the proposed or alternative project in place are not expected to be discernible due to the overwhelming volume of water in the Mississippi River relative to floodwater volume in the project area.

The impact of pesticides, atrazine in particular, on public groundwater resources is expected to be minimal. Furthermore, the impacts to shallow water resources, i.e., private wells, are also expected to be minimal. A greater potential exists for atrazine contamination to surface waters. The optimal method for reducing this likelihood is the implementation of BMPs. It is a feasible assumption that through adoption of BMPs, in combination with monitoring efforts, the atrazine contamination to water resources can be maintained below drinking water standards. A 5 percent increase in corn should not change the behavior of pesticide application and runoff, so conditions expected for increased acreage should be similar to existing conditions.

The restoration of historical, or a more typical, hydrology to Big Oak Tree State Park is likely one of the most critical processes for the recovery and sustainability of the park. However, potential impacts to Big Oak Tree State Park with the project may occur with the use of groundwater as the only supplement since there is a potential for a decrease in the supply of sediments. These potential decreases may be offset with the use of surface water when available. A comparison to bottomland hardwood areas in the St. Johns Basin (which have been isolated from floods) should be considered to further identify the potential for impacts at Big Oak Tree State Park. Dissolved iron concentrations were similar for surface-water and well-water sites, and the change in source water would not alter concentrations currently provided to the site.

24 Chapter 5 Conclusions

References

- Adamus, P. R., Stockwell, L. T., Clairain, Jr., E. J., Morrow, M. E., Rozas, L. P., and Smith, R. D. (1991). "Wetland evaluation technique (WET), Volume I: Literature review and evaluation rationale," Technical Report WRP-DE-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Ashby, S. L., Sturgis, T. C., Price, C. B., Brannon, J. M., and Pennington, J. C. (1991). "Water quality studies in the upper watershed of Steele Bayou, Mississippi," Miscellaneous Paper EL-91-23, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- 3. Beaulac, M. N., and Reckhow, K. H. (1982). "An examination of land use Nutrient export relationships," *Wat. Res. Bull.* 18(6):1013-1024.
- 4. Brinson, M. M., Bradshaw, H. D., and Kane, E. S. (1984). "Nutrient assimilative capacity of an alluvial floodplain swamp," *J. of Applied Ecology* 21, 1041-1057.
- 5. Conner, W. H., and Day, J. W., Jr. (1991). "Leaf litter decomposition in three Louisiana freshwater forested wetland areas with different flooding regimes," *Wetlands* 11(2):303-312.
- 6. Cooper, A. B. (1990). "Nitrate depletion in the riparian zone and stream channel of a small headwater catchment," *Hydrobiologia* 202, 13-26.
- 7. DeLaune, R. D., Boar, R. R., Lindau, C. W., and Kleiss, B. A. (1996). "Denitrification in bottomland hardwood wetland soils of the Cache River," *Wetlands* 16(3):309-320.
- 8. Dortch, M. S. (1996). "Removal of solids, nitrogen, and phosphorus in the Cache River wetland," *Wetlands* 16(3):358-365.
- 9. Gambrell, R. P., and Patrick, W. H., Jr. (1978). "Chemical and microbiological properties of anaerobic soils and sediments." *Plant Life in Anaerobic Environments*. D. D. Hook and R. M. M. Crawford, eds., Ann Arbor Sci. Pub. Inc., Ann Arbor, MI, 375-423.

References 25

- Harris, L. D., and Gosselink, J. G. (1990). "Cumulative impacts of bottomland hardwood forest conversion on hydrology, water quality, and terrestrial wildlife." *Ecological Processes and Cumulative Impacts: Illustrated by Bottomland Hardwood Wetland Ecosystems*. J. G. Gosselink, L. C. Lee, and T. A. Muir, eds., Lewis Publishers, Inc., Chelsea, MI.
- 11. Holmes, R. R., Jr. (1993). "Sediment transport in the lower Missouri and the central Mississippi Rivers June 26 through September 14, 1993," *Floods in the Upper Mississippi River Basin, 1993*, USGS Circular 1120-1.
- 12. Kadlec, R. H. (1997). "An autobiotic wetland phosphorus model," *Ecol. Eng.* 8, 145-172.
- 13. Killpack, S. C., and Buchholz, D. (1993). "Nitrogen in the environment: Nitrogen replacement value of legumes," Water Quality Initiative Publication WQ277, University of Missouri, Columbia, MO.
- 14. Kleiss, B. A. (1996). "Sediment retention in a bottomland hardwood wetland in eastern Arkansas," *Wetlands* 16(3), 321-333.
- 15. Larson, B. D., Journet, A. R. P., and Taylor, S. H. (1992). "Distribution and age classes of tree species in the cypress forest of Big Oak Tree State Park, Southeast Missouri," Technical Report, Missouri Department of Natural Resources.
- 16. Lindau, C. W., DeLaune, R. D., and Pardue, J. H. (1994). "Inorganic nitrogen processing and assimilation in a forested wetland," *Hydrobiologia* 277, 171-178.
- 17. Lowrance, R., Todd, R., Fail, J., Jr. Hendrickson, O., Jr. Leonard, R., and Asmussen, L. (1984). "Riparian forests as nutrient filters in agricultural watersheds," *Bioscience* 34(6), 374-377.
- 18. Luckey, R. R., and Fuller, D. L. (1984). "Water resources of the southeast lowlands, Missouri," USGS Water-resources investigations report 84-4277.
- 19. Mitsch, W. J, Rust, W., Behnke, A., and Lai, L. (1979). "Environmental observations of a riparian ecosystem during flood season," Research Report 142, UILU-WRC-79-0142, University of Illinois at Urbana-Champaign, Water Resources Center, Urbana, IL.
- 20. Oskins Doolen, W. S. (1984). "The vascular flora of Big Oak Tree State Park, Mississippi County, Missouri," Master's Thesis, Southern Illinois University.
- 21. Peterjohn, W. T., and Correll, D. L. (1984). "Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest," *Ecology* 65(5), 1466-1475.

26 References

- 22. Pinay, G., and Decamps, H. (1988). "The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: A conceptual model," *Regulated Rivers: Research and Management* 2, 507-516.
- 23. Raisin, G. W. (1996). "The role of small wetlands in catchment management: Their effect on diffuse agricultural pollutants," *Int. Revue ges. Hydrobiol.* 81(2), 213-222.
- 24. Smith, M. B., Blanchard, P. E., and Johnson, G. S. (1999). *Atrazine Management and Water Quality*. Manual 167, Extension Publications, University of Missouri-Columbia, Columbia, MO.
- 25. Snowden, R. E. D., and Wheeler, B. D. (1993). "Iron toxicity to fen plants," *J. Ecology* 81, 35-46.
- 26. Talbot, R. J., and Etherington, J. R. (1987). "Comparative studies of plant growth and distribution in relation to waterlogging, XIII, The effect of Fe2+ on photosynthesis and respiration of *Salix caprea* and *S. cinerea* ssp. *oleifolia*," *New Phytologist* 105, 575-583.
- 27. Taylor, G. J., Crowder, A. A., and Rodden, R. (1984). "Formation and morphology of an iron plaque on the roots of *Typha latifolia* L.grown in solution culture," *Amer. J. Bot.* 71(5), 666-675.
- 28. University of Missouri. (1996). "Missouri soil fertility and fertilizers research update, 1995," Agronomy Miscellaneous Publication 96-03.
- 29. U.S. Environmental Protection Agency. (1999). "Drinking water regulations and health advisories," Office of Water, (http://www.epa.gov/OST/Tools/dwstds.html), accessed on 5/25/99.
- 30. ______. (1994). "Database documentation for the National Pesticide Survey," Section Three.
- 31. U.S. Geological Survey. (1995). "Pesticides in ground water," U.S. Geological Survey Fact Sheet FS-244-95, http://water.wr.usgs.gov/pnsp/gw/.
- 32. Weller, D. E., Jordan, T. E., and Correl, D. L. (1998). "Heuristic models for material discharge from landscapes with riparian buffers," *Ecological Applications* 8(4), 1156-1169.

References 27

Table 1. Land Cover Area in the New Madrid Floodway

Cover	Acres at					
	275 ft	280 ft	282 ft	285 ft	290 ft	300 ft
Cypress/	6.7	43.3	88.9	171	496.1	692
Tupelo						
Scrub/	0	1.4	3.1	10.8	80.3	364.4
Shrub marsh						
Pasture	1.7	4.3	7.7	9.9	101.8	340.7
Open Water	0.9	9.8	121.9	170.8	592.2	687
Marsh	0	0.1	0.1	0.2	1.6	87.1
Sandbar	0	0	0	0	0	0.2
Cotton	0.8	1.9	2.6	5.2	82.8	288.6
Cotton/	0	0	0.1	6.5	224.8	643.7
Soybean						
Soybean	18	53.6	320.9	1500.4	11450.7	52577.2
Soybean/	0	0.1	0.3	2.4	6	77.9
Corn						
Corn	0.1	0.6	0.9	3.7	72.4	8211.8
Herbacious	2.9	20.6	48.3	113.1	836.7	3881.1
Vegetation						
Bottomland/	42	158.8	244.5	375.5	3345	7221.2
Hardwood						
Riparian	0.1	0.1	0.1	0.1	0.5	0.5
River	0	0	1.1	1.1	2.2	4.4
Total	73.1	294.6	840.4	2370.8	17293.3	75077.7

Table 2. Land Cover Area in St Johns Bayou

Cover	Acres at					
	275 ft	280 ft	282 ft	285 ft	290 ft	300 ft
Cypress/	15.32	80.22	101.09	250.07	485.21	686.78
Tupelo						
Pasture	3.38	18.18	22.92	52.73	102.57	176.21
Open Water	8.95	30.89	44.74	112.71	144.21	274.41
Marsh	0	0	0	0	2.05	82.98
Cotton	6.77	10.89	16.58	62.97	90	416.29
Cotton/	0	0	0	2.45	54.48	765.66
Soybean						
Soybean	18.42	153.73	292.73	1743.91	5842.45	35842.36
Soybean/	0	0	0	0.01	1.44	24.42
Corn						
Corn	0.04	0.37	0.46	1.22	78.44	7497.07
Herbacious	6.81	25.06	41.2	194.02	589.25	3742.00
Vegetation						
Bottomland	28.3	171.72	258.37	739.84	2316.24	5105.42
Hardwood						
Riparian	21.29	34.25	47.27	71.34	147.63	372.1
River	0	0	0	0	0	12.56
Total	109.29	525.29	825.38	3231.26	9853.96	54998.24

Table 3. Hydrologic scenarios for the New Madrid Floodway and St. Johns Bayou

	to section to the new r		
Scenario	Elevation (ft NGVD)*	Volume (acre-ft)	Water Source
New Madrid			
Floodway			
1 Baseline	275	388	Headwater
2 Authorized			
Season 1	285	6707	Headwater
Season 2	280	1098	Headwater
3 Avoid/Minimize			
Season 1	282	2190	Headwater
Season 2	280	1098	Combined
4 Extreme Flood	300	515089	Combined
5 Moderate Flood	290	45305	Combined
St. Johns Bayou			
1 Baseline	275	644	Headwater
2 Authorized			
Season 1	285	7298	Headwater
Season 2	280	1692	Headwater
3 Avoid/Minimize			
Season 1	282	3080	Headwater
Season 2	280	1692	Combined
4 Extreme Flood	300	310381	Combined
5 Moderate Flood	290	34372	Combined

^{*} Elevation in feet referenced to the National Geodetic Vertical Datum.

Table 4. Wetland function factors for land covers and selected water quality constituents*

Land Cover	Effect on floodwater Reference	-	Function
Type	Entert on noodwater	, 05	Factor
Cypress/Tupelo	Nitrogen – Removes (4, 5, 7,1	16)	8
Jr	Phosphorus – Removes (5, 8,1		4
	Carbon – Converts POC to DOC and exports DOC (2)		.8
	Sediment – Removes via sedimentation (1)		8
Scrub/Shrub	Nitrogen – Removes – similar to Cypress/Tupelo		8
Marsh	Phosphorus – Removes similar to Cypress/Tupelo		4
	Carbon – Converts POC to DOC and exports DOC		.8
	Sediment – Removes via sedimentation		8
Marsh	Nitrogen – Removes similar to Cypress/Tupelo		8
	Phosphorus – Removes similar to Cypress/Tupelo		4
	Carbon – Converts POC and DOC and exports DOC		.8
	Sediment – Removes via sedimentation		8
Bottomland	Nitrogen – Removes – similar to Cypress/Tupelo		8
Hardwood	Phosphorus – Removes – similar to Cypress/Tupelo		4
	Carbon – Converts POC to DOC and Exports DOC		.8
	Sediment – Removes via sedimentation		8
Riparian	Nitrogen – Removes (5, 2	22)	8
	Phosphorus – Removes via filtration		5
	Carbon – Removes via filtration		5
	Sediment – Removes via filtration		5
Sandbar	Nitrogen – Removes via filtration		2
	Phosphorus – Removes via filtration		2
	Carbon – Removes via filtration		2
	Sediment – Removes via filtration		2
Open Water	Nitrogen – Removes via sedimentation, denitrification		3
	Phosphorus – Removes via sedimentation		2
	Carbon – Removes via sedimentation		2
	Sediment – Removes via sedimentation		2
River	Nitrogen – Removes via sedimentation, denitrification		2
	Phosphorus – Removes via sedimentation		1
	Carbon – Removes via sedimentation		1
	Sediment – Removes via sedimentation		1

^{*} POC = Particulate organic carbon. DOC = Dissolved organic carbon.

Table 5. Summary and ranking of export values for nitrogen and phosphorus for selected

land cover types

Cover Type	N export	Rank	P export	Rank
	(kg/ha/yr)		(kg/ha/yr)	
Forest	2.5	1	0.2	1
Nonrow crops	6.5	4	0.7	2
(small grains)				
Pasture	5.0	2	0.75	3
Mixed	14	6	0.8	4
agriculture				
Urban	5.1	3	1.1	5
Row crops	8.5	5	2.3	6

Table 6. Watershed mass balances (Peterjohn and Correll 1984)

Season		itation	Nitrate-N	Ammonium-N	Organic-N	Total-P	Ortho-P	Organic-C
	(100m	³ /ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)
Bulk								
Precip.								
Spring	25.4		1.20	1.12	3.39	0.284	0.058	13.9
Summer	29.7		1.26	0.785	1.43	0.068	0.025	11.2
Fall	18.9		0.95	0.540	0.11	0.055	0.035	5.7
Winter	26.5		1.36	0.385	1.67	0.029	0.019	5.6
Ann.	108 ±		4.79 ±	2.59 ±	6.01 ±	$0.810 \pm$	N/A	43.1 ±
Mean	21.8		1.18	0.56	1.15	0.278		6.81
Fertiliz.	N/A		10.1 14.9 42.2		42.2	12.5	12.5	N/A
Disch.	Slow Fast							
Spring	6.2	0.6	0.532	0.197	0.58	0.251	0.116	153
	6	9						
Summer	3.2	0.8	0.428	0.089	1.04	0.926	0.111	9.23
	0	0						
Fall	0.6	0.0	0.007	0.007	0.03	0.010	0.007	0.4
	2	4						
Winter	11.	0.1	1.53	0.060	0.39	0.104	0.055	3.6
	5	2						
Ann.	29.	5.0	4.15 ±	0.434 ±	9.17 ±	1.72 ±	0.622 ±	58.2 ±
Mean	6±	<u>+</u>	3.06	0.124	10.2	1.47	0.407	61.3
	14	4.5						

Table 7. Watershed mass balances for the riparian zone of an agricultural watershed (Lowrance et al. 1984)

	Inputs*	Inputs	Inputs	Outputs*	Outputs	Outputs	Outputs
	Precipitation	Subsurface	N Fixation	Streamflow	Denitrification	Above ground storage	Balance Input – (Output+ Storage)
N	12.2	29.0	10.6	13.0	31.5	51.8	- 44.5
P	3.5	2.1		3.9		3.8	- 2.1
Ca	5.2	47.4		31.8		40.3	- 18.5
Mg	1.4	18.1		15.0		6.1	- 1.6
K	3.9	19.5		22.2		18.6	- 17.4
Cl	21.4	83.5		97.0			7.9

^{*} All units are kg/ha/year.

Table 8. Monthly discharge (1000 cfs) for the Mississippi River at Hickman, KY

1 00010	Tuble 6. Within y disentinge (1000 ets) for the Withshippi ferver at Thekinan, 121												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
	1943-1974												
Max	1249	1426	1343	1368	1193	910	839	634	428	429	689	894	713
Min	127	252	325	395	390	287	209	152	130	112	112	140	284
	530	635	764	790	661	498	389	265	224	231	282	391	471
S.D.	270	266	251	231	208	184	147	86	79	84	125	205	102
						1975-1	1998						
Max	1090	1007	1357	1333	1396	924	853	866	608	666	723	886	733
Min	145	215	379	453	262	130	120	116	134	136	190	229	301
Mean	537	601	800	779	684	536	411	320	282	301	383	531	513
S.D.	193	201	248	257	299	217	145	141	108	122	138	208	105

Table 9. Summary statistics for selected water quality constituents

stat	inst_dchrg	org_nitro	dis_ammon	tot_ammon	dis_no3	no3no2	tphos	dphos	ophos	tot_res	nf_res	to_carb	do_carb	sus_sedi	dis_iron
Surface \	Water Only - N	lo Mississip	pi River												
Mean	1347.2195	0.413778	0.066286	0.49197	0.02586	0.60607	0.2066	0.06557	0.0662979	247.27	31.8421	2.11304	3.9844	143.167	78.138
Std Dev	2361.5278	0.277589	0.086642	0.50753	0.02516	0.767	0.1311	0.0371	0.0333583	268.72	27.8314	1.72969	1.6105	101.752	105.5
Std Err	260.78712	0.041381	0.014645	0.06498	0.00425	0.09985	0.0189	0.00541	0.0048658	37.629	6.38495	0.25503	0.2401	16.9587	14.631
95 % CI	518.89434	0.083399	0.029763	0.12999	0.00864	0.19988	0.0381	0.01089	0.0097946	75.581	13.4146	0.51366	0.4838	34.4286	29.373
99 % CI	687.97709	0.111416	0.039961	0.17288	0.01161	0.26596	0.0508	0.01454	0.0130754	100.77	18.3802	0.68597	0.6464	46.1954	39.151
n	82	45	35	61	35	61	48	47	47	51	19	46	45	36	52
Min	71	0.2	0.015	0.01	0.01	0.01	0.05	0.01	0.01	41	2	0.2	0.7	45	3
Max	14000	1.6	0.469	2.5	0.101	3.16	0.64	0.16	0.16	1990	78	7.6	7.6	451	470
Mississip	pi River at Hi	ckman, KY													
Mean			0.121111	0.03			0.144			451.4	192				
Std Dev			0.159173	0			0.1385			177.71	173.031				
Std Err			0.053058	0			0.0438			56.196	54.717				
95 % CI			0.122354				0.0991			127.13	123.781				
99 % CI			0.178046				0.1423			182.64	177.838				
n			9	1			10			10	10				
Min			0.01	0.03			0.03			218	26				
Max			0.48	0.03			0.49			740	512				

Table 10. Surface water quality data summary*

				Try data		-)	1	1			
Stat	Org	D.	T.	D.	NO ₃ /				T.	NF.	Sus.
	N	NH_3	NH_3	NO_3	NO_2	TP	DOC	TOC	Res	Res	Solid
Head											
water											
Mean	0.41	0.07	0.49	0.03	0.61	0.21	3.98	2.11	247	32	143
Min	0.2	0.02	0.01	0.01	0.01	0.05	0.7	0.2	41	2	45
Max	1.6	0.47	2.5	0.10	3.16	0.64	7.6	7.6	1990	78	451
N	45	35	61	35	61	48	45	46	51	19	36
Std.	0.28	0.16	0.51	0.03	0.77	0.13	1.73	1.72	269	27.8	102
Dev.											
Miss.											
River											
Mean	0.12	0.03				0.14			451	192	
Min	0.01	0.03				0.03			218	26	
Max	0.48	0.03				0.49			740	512	
N	9	1				10			10	10	
Std.	0.16	0				0.14			178	173	
Dev.											

^{*} Concentrations are in mg/L.

Org N = Organic nitrogen

 $DNH_3 = Dissolved ammonia$

 $TNH_3 = Total ammonia$

DNO₃ =Dissolved nitrate

 $NO_3/NO_2 = Nitrate/nitrite nitrogen$

TP = Total phosphorus

DOC = Dissolved organic carbon TOC = Total organic carbon

T. Res = Total residue

NF. Res = Nonfilterable residue

Sus. Solid = Suspended solids

Table 11. Recommended initial water quality concentrations

Water Source	Nitrogen	Phosphorus	Organic Carbon	Suspended Solids
	mg/L	mg/L	mg/L	mg/L
Headwater	1.5	0.21	4	150
Combined	1.2	0.15	4	260

Table 12. Watershed Function expressed as % Net Removal – New Madrid Floodway

Scenarios	N	N	N	P	P	P	OC	OC	OC	Seds	Seds	Seds
	E*	H*	L*	Е	Н	L	Е	Н	L	Е	Н	L
1	49.0	86.4	8.6	27.8	86.8	9.2	16.5	87.3	9.8	55.8	87.3	9.8
2	23.7	83.6	7.5	16.3	84.1	8.5	13.2	84.8	9.7	33.3	85.1	9.7
3	39.2	85.8	8.5	23.3	86.2	9.1	15.8	86.7	9.8	47.8	86.9	9.9
4	12.3	82.0	6.9	10.4	82.3	7.8	10.8	82.9	9.6	17.5	82.9	9.8
5	12.5	81.9	4.5	10.2	82.4	5.8	11.1	83.7	8.6	24.6	83.8	9.0

Table 13. Watershed Function expressed as % Net Removal – St. Johns Bayou

Scenarios	N	N	N	P	P	P	OC	OC	OC	Seds	Seds	Seds
	Е	Н	L	Е	Н	L	Е	Н	L	Е	Н	L
1	47.6	86.6	8.9	28.6	86.9	9.4	11.9	87.3	9.8	45.8	87.3	9.8
2	26.9	83.9	7.4	18.1	84.4	8.4	10.9	85.1	9.7	35.7	85.3	9.7
3	41.9	85.9	9.0	24.8	86.1	9.4	17.3	86.5	9.9	44.6	86.5	9.9
4	11.8	81.9	6.5	10.1	82.1	7.4	14.5	82.8	9.6	17.4	82.9	9.8
5	17.5	82.5	5.1	12.9	83.0	6.3	22.2	84.1	8.5	29.0	84.2	8.7

^{*} E is the expected value for the watershed function
* H is the high retention value for the watershed function
* L is the low retention value for the watershed function

Table 14. Potential impacts on nutrient and sediment loading interactions between the Mississippi River and the study area with the project

for 5 days	\\al\ \(\al\\tau	Comp. (m. m/l.)	Truncata d	Not Detained (kg)	Immed on Mice. Diver
Basin / Constituent	Volume (acre-ft)	Conc (mg/L)	Expected Retention	Net Retained (kg)	Impact on Miss. River (% Decrease)
Nitrogen					
Miss. River	7,933,844	1.2	1	11744810.75	
New Madrid Floodway	45,305	1.5	0.125	10479.2096	0.09
St. Johns Bayou	34,372	1.5	0.175	11130.51427	0.09
Phosphorus					
Miss. River	7,933,844	0.2	1	1957468.458	
New Madrid Floodway	45,305	0.15	0.102	855.1035032	0.04
St. Johns Bayou	34,372	0.15	0.129	820.4779094	0.04
Organic Carbon					
Miss. River	7,933,844	4	1	39149369.15	
New Madrid Floodway	45,305	4	0.111	24814.76833	0.06
St. Johns Bayou	34,372	4	0.222	37652.93972	0.10
Sediments					
Miss. River	7,933,844	260	1	2544708995	
New Madrid Floodway	45,305	150	0.246	2062308.449	0.08
St. Johns Bayou	34,372	150	0.29	1844485.223	0.07
Miss. River of 700 K (cfs Basin / Constituent	Volume (acre-ft)	Conc (mg/L)	Expected Retention	Net Retained (kg)	Impact on Miss. River (% Decrease)
Nitrogram			recention		(70 Decircuse)
Nitrogen	E 455 000	4.2	1	0075074 000	
Miss. River	5,455,000	1.2		8075271.283	0.00
New Madrid Floodway	2190	_		1588.556116	0.02
St. Johns Bayou	3080	1.5	0.419	2388.015375	0.03
Phosphorus Miss. River	5,455,000	0.2	1	1345878.547	
	1	0.2	1		
New Madrid Floodway		0.45	0.000	04 40400000	0.01
Ct. Jahra Davisii	2190	0.15			
St. Johns Bayou	3080				
Organic Carbon	3080	0.15	0.248	141.3431535	
Organic Carbon Miss. River	3080 5,455,000	0.15	0.248	141.3431535 26917570.94	0.01
Organic Carbon Miss. River New Madrid Floodway	5,455,000 2190	0.15 4 4	0.248 1 0.158	141.3431535 26917570.94 1707.427662	0.01
Organic Carbon Miss. River New Madrid Floodway St. Johns Bayou	3080 5,455,000	0.15 4 4	0.248 1 0.158	141.3431535 26917570.94 1707.427662	0.01
Organic Carbon Miss. River New Madrid Floodway St. Johns Bayou Sediments	5,455,000 2190 3080	0.15 4 4 4	0.248 1 0.158 0.173	141.3431535 26917570.94 1707.427662 2629.286618	0.01
Organic Carbon Miss. River New Madrid Floodway St. Johns Bayou Sediments Miss. River	3080 5,455,000 2190 3080 5,455,000	0.15 4 4 4 260	0.248 1 0.158 0.173	141.3431535 26917570.94 1707.427662 2629.286618 1749642111	0.01 0.01 0.01
Organic Carbon Miss. River New Madrid Floodway St. Johns Bayou	5,455,000 2190 3080	0.15 4 4 4 260 150	0.248 1 0.158 0.173 1 0.478	141.3431535 26917570.94 1707.427662 2629.286618 1749642111 193706.5876	0.01 0.01 0.01 0.01 0.01

Table 15. Human-health criteria for pesticides in drinking water

Human-Health Criteria								
Compound	Type (2)	μg/L	Type of Criterion	Reference				
		AMIDES						
2, 6-Diethylaniline	DP (alachlor)	-						
Acetochlor	Н							
Alachlor	H	2	MCL	USEPA (1999)				
Metolachlor	H	70	HA-L	USEPA (1999)				
Napropamide	H							
Pronamide	Н	50	HA-L	USEPA (1999)				
Propachlor	H	90	HA-L	USEPA (1999)				
Propanil	П	CARBAMATE	 :Q					
3-Hydroxycarbofuran	DP (carbofuran)	CARDAMATE						
Aldicarb	I (Carbolulail)	7	draft MCL (3)	USEPA (1999)				
Aldicarb sulfone	DP (aldicarb)	7	draft MCL (3)	USEPA (1999)				
Aldicarb sulfoxide	DP (aldicarb)	7	draft MCL (3)	USEPA (1999)				
Butylate	H (aidicaib)	350	HA-L	USEPA (1999)				
Carbaryl	1	700	HA-L	USEPA (1999)				
Carbofuran	<u>'</u>	40	MCL	USEPA (1999)				
EPTC	H							
Methiocarb	1							
Methomyl	· 	200	HA-L	USEPA (1999)				
Molinate	Н							
Oxamyl	1	200	MCL	USEPA (1999)				
Pebulate	Н							
Propham	H	100	HA-L	USEPA (1999)				
Propoxur	i i							
Thiobencarb	H							
Triallate	H							
	1	CHLOROPHENOXY		l				
2,4,5-T	Н	70	HA-L	USEPA (1999)				
2,4,5-TP (silvex)	Н	50	MCL	USEPA (1999)				
2,4-D	Н	70	MCL	USEPA (1999)				
2,4-DB	Н							
Dichlorprop	Н							
MCPA	Н	10	HA-L	USEPA (1999)				
MCPB	Н							
		INITROANILIN	IES					
Benfluralin	Н							
Ethalfluralin	Н							
Oryzalin	Н							
Pendimethalin	Н							
Trifluralin	Н	5	HA-L	USEPA (1999)				
	1	ORGANOCHLOF		_				
Chlorothalonil	F	15	RSD (10-5)	USEPA (1999)				
Dacthal (DCPA)	H							
Dacthal, mono acid	H							
DDE, p,p'	DP (DDT)	1	RSD (10-5)	USEPA (1999)				
Dichlobenil	H							
Dieldrin	1	0.02	RSD (10-5)	USEPA (1999)				
HCH, alpha	DP (lindane)	0.06	RSD (10-5)	USEPA (1999)				
HCH, gamma (lindane)	1	0.2	MCL	USEPA (1999)				
A minumb no una etterrit	1	ORGANOPHOSPI						
Azinphos-methyl				(4000)				
Chlorpyrifos	1	20	HA-L	USEPA (1999)				
Diazinon	1	0.6	HA-L	USEPA (1999) USEPA (1999)				
Disulfoton	1	0.3	HA-L	(/				
Ethoprop	1	10		 LICEDA (1000)				
Fonofos	1		HA-L	USEPA (1999)				
Malathion Mothyl parethion	1	200	HA-L	USEPA (1999)				
Methyl parathion	1	2	HA-L	USEPA (1999)				
Parathion	1							
Phorate Terbufos	1	0.9	HA-L	USEPA (1999)				
16100109	1	U.8	I I/A-L	(Continued)				
				(Continued)				

Table 15. (Concluded)

		Hu			
Compound	Type (2)	μg/L	Type of Criterion	Reference	
•		PYRETHRO	IDS	•	
Permethrin, cis	1				
		TRIAZINE	S		
Atrazine	Н	3	MCL	USEPA (1999)	
Atrazine, deethyl	DP (atrazine)				
Cyanazine	H	1	HA-L	USEPA (1999)	
Metribuzin	Н	100	HA-L	USEPA (1999)	
Prometon	Н	100	HA-L (4)	USEPA (1999)	
Simazine	Н	4	MCL	USEPA (1999)	
		URACILS	,	. , ,	
Bromacil	Н	90	HA-L	USEPA (1999)	
Terbacil	Н	90	HA-L	USEPA (1999)	
		UREAS	•		
Diuron	Н	10	HA-L	USEPA (1999)	
Fenuron	Н				
Fluometuron	Н	90	HA-L	USEPA (1999)	
Linuron	Н				
Neburon	Н				
Tebuthiuron	Н	500	HA-L	USEPA (1999)	
		MISCELLANEOU			
Acifluorfen	Н	10	RSD (10-5)	USEPA (1999)	
Bromoxynil	Н				
Chloramben	Н	100	HA-L	USEPA (1999)	
Clopyralid	Н				
Dicamba	Н	200	HA-L	USEPA (1999)	
Dinoseb	Н	7	MCL	USEPA (1999)	
DNOC	Н				
Picloram	H	500	MCL	USEPA (1999)	
Propargite	1				
Triclopyr	H				
		MISCELLANE	ous		
Bentazon	Н	200	HA-L	USEPA (1999)	
Norflurazon	H				

- Common chemical names.
 H = herbicide; I = insecticide; F = fungicide; DP = degradation product, with parent compound in parantheses.
 Value applies to sum of aldicarb, aldicarb sulfoxide, and aldicarb sulfone.
 Value is under review.

Note:

RSD (10-5), risk-specific dose at a cancer risk level of 1 in 100,000; HA-L Lifetime Health Advisory; MCL, maximum contaminant level.

Table 16. Pesticides in Surface Waters (NAQWA sites)

Date	Metolachlor	Alachlor	Benfluralin	Triallate	Propanil	Thiobencarb	Pendimethalin	Napropamide
	μ g /L	μg/L	μg/L	μg/L	μ g /L	μ g /L	μ g /L	μ g /L
04-04 1996								
05-21 1996				0.0010E				
06-19 1996				0.001	0.260E			
01-14 1997		0.002						
04-07 1997					0.0040E	0.0020E		
04-25 1997					0.0040E			
05-21 1997				0.001				
05-27 1997				0.001		0.0488E		
06-05 1997					0.0040E			
06-10 1997				0.001				
06-16 1997				0.001				
06-23 1997				0.001		0.0296E		
06-30 1997			0.0020E	0.001			0.0271	
07-14 1997	0.222		0.0020E		0.0040E	0.002		0.003
07-30 1997						0.0020E		
08-14 1997						0.0020E		

E - Estimated

Table 17. Mass balance for selected water quality constituents at Big Oak Tree State Park

Elevation (ft) / Constituent	Volume (acre-ft)	Headwater Concentration (mg/L)	Mass (kg)	Groundwater Concentration (mg/L)	Mass (kg)	Change in Mass	% Change
Nitrogen* (gw < sw)		1.5		1.2			-20
285	0		0		0	0	
287	21		38.859		31.0872	7.771801	
290	859		1589.518		1271.615	317.90367	
292	2364		4374.414		3499.531	874.88274	
Nitroger (gw > sw							16.66667
285	0	0.6	0	0.7	0		
287	21		15.5436		18.1342	-2.5906	
290	859		635.8073		741.7752	-105.9679	
292	2364		1749.765		2041.393	-291.6276	
Phosphor (gw < sw		0.2		0.15			-25
285	0		0		0	0	
287	21		5.181201		3.8859	1.2953002	
290	859		211.9358		158.9518	52.983945	
292	2364		583.2552		437.4414	145.81379	
Phosphor (gw > sw		0.2		0.4			(+) 100
285	0		0		0	0	
287	21		5.181201		10.3624	5.1812006	
290	859		211.9358		423.8716	211.93578	
292	2364		583.2552		1166.51	583.25516	
Organic Car	rbon	4		2			-50
285	0		0		0	0	
287	21		103.624		51.81201	51.812006	
290	859		4238.716		2119.358	2119.3578	
292	2364		11665.1		5832.552	5832.5516	
Sediments		260		2			-99
285	0		0		0	0	
287	21		6735.561		51.81201	6683.7488	
290	859		275516.5		2119.358	273397.15	
292	2364		758231.7		5832.552	752399.15	

^{*} gw = groundwater; sw = surface water.

Figure 1. Stations for water quality data retrieved from STORET

Figure 2. Dissolved oxygen concentrations.

Figure 3. BOD_5 measurements.

Figure 4. Nitrate/nitrite concentrations.

Figure 5. Organic nitrogen concentrations.

Figure 6. Total phosphorus concentrations.

Figure 7. Dissolved phosphorus concentrations.

Figure 8. Total organic carbon concentrations.

Figure 9. Dissolved organic carbon concentrations.

Figure 10. Suspended solids concentrations.

Figure 11. Residue concentrations.

Figure 12. Instantaneous discharge measurements for Rives (♦) and Morehouse (○).

Figure 13. Total iron concentrations.

Figure 14. Dissolved iron concentrations.

Figure 15. Distribution of iron concentrations in well water. Values greater than $3\ mg/L$ are depicted with open circles.

Figure 16. Distribution of total phosphorus concentrations by water source.

Figure 17. Distribution of nitrate and nitrite concentrations by water source.

Figure 18. Distribution of organic nitrogen concentrations by water source.

Figure 19. Distribution of ammonia concentrations by water source.

Figure 20. Distribution of total Kjeldahl nitrogen concentrations by water source.

Figure 21. Distribution of conductivity values by water source.

Figure 22. Distribution of total alkalinity values by water source.

Figure 23. Nitrogen removal for the New Madrid Floodway.

Figure 24. Phosphorus removal for the New Madrid Floodway.

Figure 25. Organic carbon removal for the New Madrid Floodway.

Figure 26. Sediment removal for the New Madrid Floodway.

Figure 27. Nitrogen removal for St. Johns Bayou.

Figure 28. Phosphorus removal for St. Johns Bayou.

Figure 29. Organic carbon removal for St. Johns Bayou.

Figure 30. Sediment removal for St. Johns Bayou.

Figure 31. Distribution of Tebuthiuron.

Figure 32. Distribution of Prometon.

Figure 33. Distribution of Diethyl Atrazine.

Figure 34. Distribution of Permethrin.

Figure 35. Distribution of DCPA.

Figure 36. Distribution of Atrazine.

Figure 37. Distribution of Propoxur.

Figure 38. Distribution of Silvex.

Figure 39. Distribution of Simazine.

APPENDIX A

Water Quality Data Sources Annotated Bibliography

Brahana, J.V., Mesko, T.O., Busby, J.F., and Kraemer, T.F. 1985. Ground-water quality data from the northern Mississippi embayment – Arkansas, Missouri, Kentucky, Tennessee, and Mississippi. USGS Open-file report 85-683.

Data were included in the STORET retrieval.

Brahana, J.V. and Mesko, T.O. 1987. Hydrogeology and preliminary assessment of regional flow in the upper Creataceous and adjacent aquifers in the northern Mississippi embayment. USGS Water-resources investigations report 87-4000.

Data were not applicable to the study except for supporting information on potential pesticide movement in the groundwater.

Heimann, D.C. and Femmer, S.R. 1998. Water quality, hydrology, and invertebrate communities of three remnant wetlands in Missouri, 1995-1997. USGS Water-resources investigations report 98-4190.

Data were not applicable to the study area.

Holmes, Jr., R. R. 1993. Sediment transport in the lower Missouri and the central Mississippi Rivers – June 26 through September 14, 1993, Floods in the Upper Mississippi River Basin, 1993. USGS Circular 1120-1.

Data were used in developing sediment concentrations and potential distribution and sedimentation patterns used for the Mississippi River.

Killpack, S.C. and Buchholz, D. 1993. Nitrogen in the environment: Nitrogen replacement value of legumes, University Extension, University of Missouri-Columbia, Water Quality Initiative publication WQ277.

Used in the discussion of nitrogen movement in agricultural and upland land covers.

Lory, J.A. 1999. Agricultural phosphorus and water quality, University of Missouri, Agricultural Publication, G9181.

Used in determining the potential for phosphorus movement.

Luckey, R.R. and Fuller, D.L. 1979. Hydrogeologic data for the Mississippi embayment of southeastern Missouri. USGS Open-file report 79-421.

Data were included in the STORET retrieval.

Luckey, R.R. and Fuller, D.L. 1984. Water resources of the southeast lowlands, Missouri. USGS Water-resources investigations report 84-4277.

Included data that were not included in the STORET retrieval.

MDNR. 1978. Memorandum – Results of water quality and compliance monitoring survey at Sikeston Municipal Wastewater Treatment Facility.

Included in discussion of point source data.

MDNR. 1978. Compliance Monitoring Report, Charleston Municipal Wastewater Treatment Facility, MO-0021776, May 16-May19, 1978.

Included in discussion of point source data.

MDNR. 1984. St. John's Ditch, Scott and New Madrid Counties, August 8 and 9, 1984.

Included in discussion of point source data.

MDNR. 1996. Stream survey of St. John's Ditch by John Ford, near the Sikeston Wastewater Treatment Plant.

Included in discussion of point source data.

Mesko, T.O. and Berkas, W.R. 1987. Missouri ground-water quality, USGS Open-file report 87-0735.

Was not applicable to the study.

Mesko, T.O. and Carlson, G.M. 1988. Occurrence of pesticides, nitrate, volatile organic compounds, and trace elements in ground water and streams, southeastern Missouri, 1986-1987. USGS Open-file report 88-495.

Data were included in the STORET retrieval.

Natural Resources Conservation Service, 1997-1999, Southeast Missouri Regional Water District, well-water reports.

Data were included in the discussion of groundwater quality.

Schardein, K. 1976. Water quality monitoring report, Sikeston, Missouri, MO-0035009, October 19-22, 1976. Missouri Department of Natural Resources.

Included in discussion of point source data.

Tracy, P.W. and Hefner, S.G. 1991. A survey of southeast Missouri irrigation. University Extension, University of Missouri-Columbia, WQ278.

Used as supporting information for assessing the potential for pesticide movement.

University of Missouri. 1996. Missouri soil fertility and fertilizers research update, 1995. Agronomy Miscellaneous Publication 96-03.

Used in assessing potential phosphorus movement.

University of Missouri. 1999. Missouri soil fertility and fertilizers research update, unpublished data.

Used in assessing potential phosphorus movement.

US EPA – STORET

Used to determine concentration distributions and mean values.

USGS – NAWQA studies in the boothill of MO. 1996-1999.

Used to supplement suggested concentration values and distributions described with data from the study area included in the STORET retrieval.

Pesticide Sources

MSEA Water Quality Projects, 1999. ATRAZINE, Extension Publications, University of Missouri, Columbia, MO.

Smith, M.B., Blanchard, P. E, Johnson, G. S., 1999. Atrazine Management and Water Quality, Manual 167, Extension Publications, University of Missouri-Columbia, Columbia, MO.

Smith, M.B., Prato, T. A., Blanchard, P.E., Kitchen, N.R., Lerch, R. N., Hjelmfelt, A. T., and Alberts, E. E., 1999. An Integrated Systems Approach to Watershed Management and Water Quality, Special Report 525, Extension Publications, , University of Missouri-Columbia, Columbia, MO.

Agricultural Drainage, Bulletin 871-98, Bulletin Extension, The Ohio State University, http://ohioline.ag.ohio-state.edu/b871/b871_32.html.

Skopec, M. P. and Hoyer, B. E., 1998. Pesticide Trends in Surface and Groundwater in Iowa: 1980 – 1995. Poster at the Sixth National Nonpoint-Source Monitoring Workshop, Cedar Rapids, Iowa, http://samuel.igsb.uiowa.edu/inforsch/iapest/pesticid.html

Johnson, B and Kending, A., 1999. Weed Control Guide for Missouri Field Crops, MP575, Outreach and Extension, University of Missouri-Columbia, Columbia, MO.

Hoffman D. J. and Keaster, A. J., 1999. Corn Soil Insects Research, Special Report 519, Agricultural Experiment Station, University of Missouri-Columbia, Columbia, MO.

Burkart, M.R., Gassman, P.W., Morman, T.B., and Singh, P., 1999. Estimating Atrazine Leaching in the Midwest, Journal of the American Water Resources Association, Vol. 35, No.5.

Squillace, P.J., Burkart, M.A., and Simpkins, W.W., 1997. Infiltration of Atrazine and Metabolites From A Stream to An Alluvial Aquifer, Journal of the American Water Resources Association, Vol. 33, No.1.

Holden, L.R., Graham, J.A., Whitmore, R.W., Alexander, W.J., Pratt, R.W., Liddle, S.K., and Piper, L.L., 1992. Results of the National Alachlor Well Water Survey, Environmental Science and Technology, Vol 26, No. 5.

Ostrofsky, E.B., Traina, S.J., Tuovinen, O.H., 1997. Variation in Atrazine Mineralization Rates in Relation to Agricultural Management Practice, Journal of Environmental Quality, 26:647-657.

Stolpe, N.B. and Shea, P.J., 1995. Alachlor and Atrazine Degradation in Nebraska Soil and Underlying Sediments, Soil Science, Vol.160, No.5.

Thurman, E.M., Goolsby, D.A., Meyer, M.T., Mills, M.S., Pomes, M.L., and Kolpin, D.W., 1992. A reconnaissance Study of Herbicides and Their Metabolites in Surface Water of the Midwestern United States Using Immunoassay and Gas Chromatography/Mass Spectrometry, Environmental Science and Technology, 26-2440-2447.

APPENDIX B Water Quality Data and Data Summaries

- Table B1. Database developed from the STORET retrieval.
- Table B2. Summary statistics for STORET retrieval.
- Table B3. Selected water quality data from USGS NAWQA studies at Rives and Morehouse, MO.
- Table B4. Selected pesticide data from USGS NAWQA studies at Rives and Morehouse, MO.
- Table B5. Selected water quality data from the Mississippi River at Thebes, IL.
- Table B6. Well-water data from the NRCS of Missouri.

		e developed from the STORET retrieval.			-	5				\vdash	
ation		Station Description	Media		Time		10		11		34
		BIG OAK LAKE SSE OF EAST PRAIRIE, MISSOURI.	/TYPA/AMBNT/FISH/LAKE	910909				@	-	@	-
		MISS R AT NEW MADRID MO	/TYPA/AMBNT/FISH/STREAM	770928				@	-	@	-
		MISSISSIPPI AT CARUTHERSVILLE, MISSOURI.	/TYPA/AMBNT/FISH/STREAM	940913				@	-	@	-
		MISSISSIPPI AT CARUTHERSVILLE, MISSOURI.	/TYPA/AMBNT/FISH/STREAM	960910				@	-	@	-
	2356	NEW MADRID POWER PLANT	/TYPA/AMBNT/STREAM	760915			37		-	@	-
	2356	NEW MADRID POWER PLANT	/TYPA/AMBNT/STREAM	760916	930	-	36		-	@	-
	2356	NEW MADRID POWER PLANT	/TYPA/AMBNT/STREAM	760917			37	@	-	@	-
	2356	NEW MADRID POWER PLANT	/TYPA/AMBNT/STREAM	760916	1030	-	-	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760914	850	-	-	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760915	850	-	24	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760916	800	-	24.5	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760915	730	-	-	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760917	815	-	27.5	@	-	@	-
	2469	PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	760916	800	-	-	@	-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	780725				@	-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	780726			31.5		-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	780727			32		-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	780727				@	-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	810916			24		_	@	_
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	810917			21		-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	920302				@		@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	930303			18.6		-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	930304			16.9			@	-
		PLASTENE SUPPLY-COOLING WATER PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	930304				@	-	@	-
		PLASTENE SUPPLY-COOLING WATER PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	930305			16.5		-	@	-
		PLASTENE SUPPLY-COOLING WATER	/TYPA/AMBNT/STREAM	930304				@	-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM			0.983999	4.5		-	@	-
			/TYPA/AMBNT/STREAM					@	-	@	-
		HICKMAN COPRODUCTION		930203		0.983999			-		
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203			2.6		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203		4.92	2.6		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203		9.84	2.6		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203		16.4	2.6		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203		22.96	2.6		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	921216		-		@	-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203		1.64	3.9		-	@	-
		HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	921216		-		@	-	@	-
	210068	HICKMAN COPRODUCTION	/TYPA/AMBNT/STREAM	930203	1045	1.64	3.1		-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	921217		1.312	5.2		-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	930203	1358	0.983999	4.9	@	-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	930203	1400	4.92	4.9	@	-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	930203	1402	9.84	4.9	@	-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	930203	1403	16.4	4.9	@	-	@	-
	477504	JOLLY LANDING	/TYPA/AMBNT/STREAM	930203	1404	21.32	4.9	@	-	@	-
		SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	921217		1.312	6.4		-	@	-
		SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	921217		3.28	6.4		-	@	-
		SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	921217		6.56	6.4		-	@	-
		SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	921217		9.84	6.5		-	@	-

Station	Station Description	Media	Sdate	Time I	Depth	10		11		34
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	921217	1121	11.808	6.5	@	-	@	- @
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	930203	1306	0.983999	5.6	@	-	@	- @
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	930203		4.92	5		-	@	- @
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	930203	1310	9.84	4.9	@	-	@	- @
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	930203	1311	16.4	5	@	-	@	- @
477505	SLAB FILL CHUTE	/TYPA/AMBNT/STREAM	930203	1313	18.696	5		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217	1200	1.312	5.6	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217	1201	3.28	5.6	@	-	@	- @
		/TYPA/AMBNT/STREAM	921217		6.56	5.6		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217		9.84	5.6		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217		13.12	5.5		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217		16.4	5.5		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217	1206	19.68	5.5		-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	921217	1208	22.96	5.5	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM			0.983999	5	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	930203		4.92	5	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	930203	1329	9.84	5	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	930203	1330	16.4	5	@	-	@	- @
477506	UPPER HEAD CHUTE	/TYPA/AMBNT/STREAM	930203	1332	20.336	5	@	-	@	- @
	TIPTONVILLE COPRODUCTION	/TYPA/AMBNT/STREAM	921217		-	- (@	-	@	- @
477507	TIPTONVILLE COPRODUCTION	/TYPA/AMBNT/STREAM	930203		-		@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	690723	1445	-	30	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	690724	915	-	28	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	690903	920	-	27	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	690903	930	-	- (@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	691015	920	-	17	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	691120	1000	-	9	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	691120	-	-	- (@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	691216	1000	-	6		-	@	- @
		/TYPA/AMBNT/STREAM	691216	-	-		@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	700129	940	-	- (@	-	@	- @
		/TYPA/AMBNT/STREAM	700226	930	-	4.5	@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	700326	940	-	8	@	-	@	- @
		/TYPA/AMBNT/STREAM	700326			8		-	@	- @
7024070		/TYPA/AMBNT/STREAM	700416	950	-	- (@	-	@	- @
		/TYPA/AMBNT/STREAM	700416		-		@	-	@	- @
		/TYPA/AMBNT/STREAM	700521	1000	-	23	@	-	@	- @
		/TYPA/AMBNT/STREAM	700521		-	- (@	-	@	- @
	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	700625			26		-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	700625	1000	-	- (@	-	@	- @
7024070	MISSISSIPPI RIVER AT HICKMAN, KY.	/TYPA/AMBNT/STREAM	700710	1000	-	29	@	-	@	- @
5600	LOXCREEN IND WATER SUPPLY,HAYTI	/TYPA/AMBNT/WELL	790821		-		@	-	@	- @
	LOXCREEN MUNI WATER SUPPLY,HAY\I	/TYPA/AMBNT/WELL	790821	830	-	- (@	-	@	- @
		/TYPA/AMBNT/WELL	690325	-	-	- (@	-	@	- @
	T16N R11E 01DCB1	/TYPA/AMBNT/WELL	750107		-	16		-	@	- @
		/TYPA/AMBNT/WELL	860617	-	-		@	-	@	- @
	T16N R11E 04BAC1	/TYPA/AMBNT/WELL	641106		-		@	-	@	- @
360526089440601	T17N R12E 23CCB1	/TYPA/AMBNT/WELL	860617	-	-	- (@	-	@	- @

36084968435001 T18N R12E 258BB1	Station	Station Description	Media	Sdate	Time [Depth 10)	11		34
96049089435001 FEMSOTO PYSO TVELL 2	360949089435001	T18N R12E 25BBB1	/TYPA/AMBNT/WELL	661117	-		@	-	@	- @
36103068425001 PEMISCOT PWSD 1 WELL 2 TYPAAMBNTWELL 821001 1200	360949089435001	T18N R12E 25BBB1	/TYPA/AMBNT/WELL	750107	1200	- 16	@	-	@	- @
\$613008932001 TENRISOT PWISD WELL 2	360949089435001	T18N R12E 25BBB1	/TYPA/AMBNT/WELL	750702	1200			-		
361130089394001 TIRR R13E 16GCD1			/TYPA/AMBNT/WELL	810928	1200		@	-	@	- @
196114009839203 T18N R13E 16CAD3	361030089425001	PEMISCOT PWSD 1 WELL 2	/TYPA/AMBNT/WELL	821001	1200		@	-		- @
16114008939001 TISN RT15 EGCAD	361130089394001	T18N R13E 16BCC1	/TYPA/AMBNT/WELL	430304	-		@	-		
161140069393101 TAB R 13E 16CAD	361140089392903	T18N R13E 16CAD3	/TYPA/AMBNT/WELL	550210	1200		@	-	@	- @
3614509945001 IAVTN 10.3-ARTESIAN WELL	361140089393001	T18N R13E 16CAC1	/TYPA/AMBNT/WELL	600428	-		@	-	@	- @
361415089450201 HAYTI NO 3-ARTESIAN WELL	361140089393101	T18N R13E 16CAD	/TYPA/AMBNT/WELL				@	-	@	- @
361415089450201 HAYTI NO.3-ARTESIAN WELL	361242089390401	LK:A- 1 SPRIGGS	/TYPA/AMBNT/WELL	560329	-	- 15.6	@	-	@	- @
1861415688450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	470218	1200		@	-	@	- @
1861415089450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	510514	1200		@	-	@	- @
161415089450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	510622	1200		@	-	@	- @
1861415089450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	540423	1200		@	-	@	- @
S81415089450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	570927	1200	- 35	@	-	@	- @
18614150894450201 HAYTI NO.3-ARTESIAN WELL	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	831012	1000	- 34	1 @	-	@	- @
Sel1418089444501 TI9N R1ZE 34CAC1	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	831014	1030	- 34	1 @	-	@	- @
1561425089450701 TISN R12E 34CB	361415089450201	HAYTI NO.3-ARTESIAN WELL	/TYPA/AMBNT/WELL	840802	800	- 34.5	@	-	@	- @
1561455089443301 T19N R12E 27DCB1	361418089444501	T19N R12E 34CAC1	/TYPA/AMBNT/WELL	620605	-		@	-	@	- @
1561455089443301 T19N R12E 27DCB1	361425089450701	T19N R12E 34CB	/TYPA/AMBNT/WELL	710910	-		@	-	@	- @
361455089443301 T19N R12E 27DCB1	361455089443301	T19N R12E 27DCB1	/TYPA/AMBNT/WELL	860618	1200		@	-	@	- @
361920089432801 T20N R12E 35DCD1	361455089443301	T19N R12E 27DCB1	/TYPA/AMBNT/WELL	860618	1205		@	-	@	- @
36137089343201 LK:D- 1 JOE CHADWICK	361455089443301	T19N R12E 27DCB1	/TYPA/AMBNT/WELL	860618	-		@	-	@	- @
36137089343201 LK:D- 1 JOE CHADWICK	361920089432801	T20N R12E 35DCD1	/TYPA/AMBNT/WELL	860618	-		@	-	@	- @
362252089420201 T20N R13E 07CBC1	361937089343201	LK:D- 1 JOE CHADWICK	/TYPA/AMBNT/WELL			- 16.1	@	-	@	- @
362338089364401 T20N R13E 11AAB1 TYPA/AMBNT/WELL T50729 1200 - 16	362100089422001	T20N R12E 24DDC1	/TYPA/AMBNT/WELL	550608	-		@	-	@	- @
362341089365701 T20N R13E 11ABB1 TYPA/AMBNT/WELL T50729 1200 - 17	362252089420201	T20N R13E 07CBC1	/TYPA/AMBNT/WELL	860618	-		@	-	@	- @
362355089364801 T20N R13E 02DCA1	362338089364401	T20N R13E 11AAB1	/TYPA/AMBNT/WELL	750729	1200	- 16	@	-	@	- @
362356089364001 T20N R13E 02DDB1 T7YPA/AMBNT/WELL T50729 1200 - 16	362341089365701	T20N R13E 11ABB1	/TYPA/AMBNT/WELL	750729	1200	- 17	' @	-	@	- @
362406089365401 T20N R13E 02DBB1 TYPA/AMBNT/WELL T50729 1200 - 16 @ - @ - @ 362408089364301 T20N R13E 02DBA1 T7YPA/AMBNT/WELL T50729 1200 - 16 @ - @ - @ 362419089365201 T20N R13E 02DAA1 T7YPA/AMBNT/WELL T50729 1200 - 16 @ - @ - @ 362419089365201 T20N R13E 02DAA1 T7YPA/AMBNT/WELL T50729 1200 - 16 @ - @ - @ 362440089334801 T21N R14E 32DCC1 T7YPA/AMBNT/WELL T81109 1200 - 31 @ - @ - @ 362527089421101 T21N R14E 36AAA1 PORTAGEVILLE WELL NO.3 T7YPA/AMBNT/WELL T590930 1200 @ - @ - @ - @ @ 362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 T7YPA/AMBNT/WELL T590930 @ - @ - @ - @ @ 362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 T7YPA/AMBNT/WELL T590930 @ - @ - @ - @ @ & & & & & & & &	362355089364801	T20N R13E 02DCA1	/TYPA/AMBNT/WELL	750729	1200	- 16	6 @	-	@	- @
362408089364301 T20N R13E 02DBA1	362356089364001	T20N R13E 02DDB1	/TYPA/AMBNT/WELL	750729	1200	- 16	@	-	@	- @
T20N R13E 02ACA1	362406089365401	T20N R13E 02DBB1	/TYPA/AMBNT/WELL	750729	1200	- 16	6 @	-	@	- @
362440089334801 T21N R14E 32DCC1	362408089364301	T20N R13E 02DBA1	/TYPA/AMBNT/WELL	750729	1200	- 16	6 @	-	@	- @
362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 /TYPA/AMBNT/WELL 590930 1200 - - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @ - @	362419089365201	T20N R13E 02ACA1	/TYPA/AMBNT/WELL	750729	1200	- 16	@	-	@	- @
362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 /TYPA/AMBNT/WELL 590930 @ - @ - @ - @ 362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 /TYPA/AMBNT/WELL 750814 1200 - 16 @ - @ - @ 362528089414301 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 620821 1200 - 18 @ - @ - @ 362528089414301 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 621212 1200 @ - @ - @ 362530089414001 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 410701 @ - @ - @ 362530089414001 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 560329 16.7 @ - @ - @ 362718089361101 T21N R13E 13CDC1 /TYPA/AMBNT/WELL 560329 16.7 @ - @ - @ 362718089361101 T21N R13E 13CDC1 /TYPA/AMBNT/WELL 860618 @ - @ - @ 362955089293301 J. WHITSON /TYPA/AMBNT/WELL 660113 @ - @ - @ 36303089240901 K02C0004 /TYPA/AMBNT/WELL 660113 @ - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 @ - @ @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 @ - @ - @ 3620 - @ 362005	362440089334801	T21N R14E 32DCC1	/TYPA/AMBNT/WELL	781109	1200	- 3′	@	-	@	- @
362527089421101 T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3 /TYPA/AMBNT/WELL 750814 1200 - 16 @ - @ - @ 362528089414301 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 620821 1200 - 18 @ - @ - @ 362528089414301 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 621212 1200 - - @ - @ - @ 362530089414001 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 410701 - - @ - @ - @ 362530089414001 T21N R13E 30CDC1 /TYPA/AMBNT/WELL 410701 - - @ - @ - @ 362530089414001 T21N R13E 13CDC1 /TYPA/AMBNT/WELL 560329 - 16.7 @ - @ - @ 362718089361101 T21N R13E 13CDC1 /TYPA/AMBNT/WELL 860618 - - @ - @ - @ 362955089293301 J. WHITSON /TYPA/AMBNT/WELL 660113 - - - @ - @ 363039089240901 K02C0004 /TYPA/AMBNT/WELL 660113 - - - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 620822 1200 - - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 - - @ - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 - - @ & & & & & & & &	362527089421101	T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3	/TYPA/AMBNT/WELL	590930	1200		@	-	@	- @
362528089414301 T21N R13E 30CDC1	362527089421101	T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3	/TYPA/AMBNT/WELL	590930	-		@	-	@	- @
362528089414301 T21N R13E 30CDC1	362527089421101	T21N R12E 36AAA1 PORTAGEVILLE WELL NO.3	/TYPA/AMBNT/WELL	750814	1200	- 16	6 @	-	@	- @
362528089414301 T21N R13E 30CDC1	362528089414301	T21N R13E 30CDC1	/TYPA/AMBNT/WELL	620821	1200	- 18	0	-	@	- @
362640089295301 LK:G- 7 W.F. TIPTON /TYPA/AMBNT/WELL 560329 16.7 @ - @ - @ 362718089361101 T21N R13E 13CDC1 /TYPA/AMBNT/WELL 860618 @ - @ - @ - @ 362955089293301 J. WHITSON /TYPA/AMBNT/WELL 660113 @ - @ - @ - @ 363039089240901 K02C0004 /TYPA/AMBNT/WELL 660113 @ - @ - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 620822 1200 @ - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 @ - @ - @ - @	362528089414301	T21N R13E 30CDC1		621212	1200		@	-	@	- @
362640089295301 LK:G- 7 W.F. TIPTON /TYPA/AMBNT/WELL 560329 - 16.7 @ - . @ - . @ - <td>362530089414001</td> <td>T21N R13E 30CDC1</td> <td>/TYPA/AMBNT/WELL</td> <td>410701</td> <td>-</td> <td></td> <td>@</td> <td>-</td> <td>@</td> <td>- @</td>	362530089414001	T21N R13E 30CDC1	/TYPA/AMBNT/WELL	410701	-		@	-	@	- @
362955089293301 J. WHITSON /TYPA/AMBNT/WELL 660113 - - @ -	362640089295301	LK:G- 7 W.F. TIPTON		560329	-	- 16.7	' @	-	@	- @
362955089293301 J. WHITSON /TYPA/AMBNT/WELL 660113 - - @ -	362718089361101	T21N R13E 13CDC1	/TYPA/AMBNT/WELL	860618	-		@	-	@	- @
363039089240901 K02C0004 /TYPA/AMBNT/WELL 660113 - - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 620822 1200 - - @ - @ 363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 - - @ - @								-		
363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 620822 1200 @ - @ - @ - @ - @ - @ - @ - @ - @								-	_	
363107089363401 CITY OF MARSTON /TYPA/AMBNT/WELL 621005 1200 @ - @ - @								-		
								-		
								-		

Station	Station Description	Media	Sdate	Time I	Depth	10		11		34
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	630813	1200	-	-	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	640723			-	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	660225	1200	-	-	@	-	@	- @
	CITY OF MARSTON	/TYPA/AMBNT/WELL	670714	1200	-	-	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	690813	1200	-	-	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	750814	1200	-	16	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	831102	745	-	28.2	@	-	@	- @
363107089363401	CITY OF MARSTON	/TYPA/AMBNT/WELL	840802	1100	-	24.7	@	-	@	- @
363126089291501		/TYPA/AMBNT/WELL	650420		-		@	-	@	- @
363130089370001	T22N R13E	/TYPA/AMBNT/WELL	710723	-	-	-	@	-	@	- @
363157089291701	J. WHITSON	/TYPA/AMBNT/WELL	650420	-	-	-	@	-	@	- @
363200089350001	T22N R14E 19	/TYPA/AMBNT/WELL	690516	-	-	-	@	-	@	- @
363219089310701	A. STEPP	/TYPA/AMBNT/WELL	650419	-	-	-	@	-	@	- @
363447089173401	K02D0508	/TYPA/AMBNT/WELL	650420	-	-	15.6	@	-	@	- @
363500089320001	T23N R14E 34DCD1	/TYPA/AMBNT/WELL	660720	-	-		@	-	@	- @
363517089124501		/TYPA/AMBNT/WELL	661115	-	-	13.9	@	-	@	- @
363523089361001	T23N R13E 35CAA1	/TYPA/AMBNT/WELL	520709	1200	-	-	@	-	@	- @
363523089361001	T23N R13E 35CAA1	/TYPA/AMBNT/WELL	620822	1200	-	19	@	-	@	- @
363659089142801		/TYPA/AMBNT/WELL	661115	-	-	-	@	-	@	- @
	T23N R16E 14ACB1	/TYPA/AMBNT/WELL	640930	1200	-	14	@	-	@	- @
363827089172701	T23N R16E 14ACB1	/TYPA/AMBNT/WELL	650823		-		@	-	@	- @
363827089172701	T23N R16E 14ACB1	/TYPA/AMBNT/WELL	750806	1200	-	7.4	@	-	@	- @
363830089173501	T23N R16E 14BDA	/TYPA/AMBNT/WELL	640930	-	-	-	@	-	@	- @
363840089170001	T23N R16E 14AAA1	/TYPA/AMBNT/WELL	661117	-	-	-	@	-	@	- @
364055089103201	T24N R17E 35ADD1	/TYPA/AMBNT/WELL	860617	-	-	-	@	-	@	- @
364222089243401	T24N R15E 23CBC1	/TYPA/AMBNT/WELL	760727	1200	-	17	@	-	@	- @
364224089273301	T24N R15E 20CAC1	/TYPA/AMBNT/WELL	760727	1200	-	15	@	-	@	- @
364240089313201	T24N R14E 22ACA1	/TYPA/AMBNT/WELL	760727	1200	-	15	@	-	@	- @
364247089273401	T24N R15E 20BDB1	/TYPA/AMBNT/WELL	760727	1200	-	15	@	-	@	- @
364331089123701	T24N R17E 15BCC1	/TYPA/AMBNT/WELL	860617	-	-	-	@	-	@	- @
	T24N R17E 07ACC1	/TYPA/AMBNT/WELL	760527				@	-	@	- @
364453089282401	T24N R15E 06CDD1	/TYPA/AMBNT/WELL	860618	1200	-	-	@	-	@	- @
364453089282401	T24N R15E 06CDD1	/TYPA/AMBNT/WELL	860618	1205	-	-	@	-	@	- @
364453089282401	T24N R15E 06CDD1	/TYPA/AMBNT/WELL	860618	-	-		@	-	@	- @
W47371	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	921217	1515	-	13.8	@	-	@	- @
W47371	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	930204	835	-	12.7	@	-	@	- @
W47372	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	921217		-	8.2		-	@	- @
	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	930204	855	-	9.1	@	-	@	- @
W47373	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	921217			15.6		-	@	- @
W47373	COPRODUCTION SITE ASSESSMENT	/TYPA/AMBNT/WELL	930204	950	-	15.7	@	-	@	- @
2363	NEW MADRID POWER PLANT	/TYPA/IND/NTRTMT/INTAKE/NONAMB/PIPE	760915	910	-	23.5	@	-	@	- @
2363	NEW MADRID POWER PLANT	/TYPA/IND/NTRTMT/INTAKE/NONAMB/PIPE	760916		-	22.5		-	@	- @
2363	NEW MADRID POWER PLANT	/TYPA/IND/NTRTMT/INTAKE/NONAMB/PIPE	760915	1100	-	-	@	-	@	- @
	-	/TYPA/IND/NTRTMT/INTAKE/NONAMB/PIPE	760917			23	_	-	@	- @
	LOXCREEN IND SLUDGES,HAYTI MO.	/TYPA/IND/NTRTMT/OUTFL/NONAMB/PIPE	790821		-		@	-	@	- @
		/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741023		-	17	_	-	@	- @
	PLASTENE SETTLING POND EFFLUENT	/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741022		-		@	-	@	- @
989	PLASTENE SETTLING POND EFFLUENT	/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741024	650	-	19	@	-	@	- @

Station	Station Description	Media	Sdate Time Depth	10	11	1	34	٦
	989 PLASTENE SETTLING POND EFFLUENT	/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741023 715 -	- @	-	@		@
	989 PLASTENE SETTLING POND EFFLUENT	/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741025 650 -	19 @	-	@		@
	989 PLASTENE SETTLING POND EFFLUENT	/TYPA/IND/PTRTMT/OUTFL/NONAMB/PIPE	741024 650 -	- @	-	@		@
	990 PLASTENE COMBINED EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	741023 635 -	17 @	-	@		@
	990 PLASTENE COMBINED EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	741022 730 -	- @	-	@	- (@
	990 PLASTENE COMBINED EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	741024 630 -	20 @	-	@		@
	990 PLASTENE COMBINED EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	741025 630 -	19 @	-	@		@
	990 PLASTENE COMBINED EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	741024 630 -	- @)	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 1600 -	- @		@	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 1605 -	- @	-	_	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1055 -	- @		@	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1600 -	- @	-)	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1605 -	- @		9	- (@
	2353 LOXCREEN PAINT LINE EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 930 -	- @	-		- (@
	2357 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1045 -	22.5 @		_	- (@
	2357 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 910 -	24.5 @	-	_	- (@
	2358 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 1040 -	23.5 @	ı -	@	- 0	@
	2358 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1010 -	22.5 @	-	@	- (@
	2359 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 915 -	32 @		@	- (@
	2359 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 910 -	30 @	-	_	- (@
	2359 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 905 -	31 @	-)	- (@
	2360 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 940 -	23.5 @	-	@	- (@
	2360 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 900 -	23.5 @	ı -	@	- 0	@
	2361 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 1020 -	- @	-	@	- (@
	2361 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 1005 -	- @	-	@	- (@
	2361 NEW MADRID POWER PLANT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 930 -	23.5 @	-	@	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760914 1000 -	- @	-	@	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 845 -	24 @	-	_	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 840 -	- @	-	@	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 855 -	24 @	-		- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 850 -	- @	-	_	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 840 -	23 @	-		- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790821 750 -	27 @	-		- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790820 1007 -	- @	-	•	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790822 825 -	25 @	-	•	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790821 750 -	- @	-		- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790823 825 -	26 @	-)	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	790822 825 -	- @)	- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810916 1000 -	22 @			- (@
	2365 LOXCREEN ANODIZING EFFLUENT	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810917 1030 -	18 @		_		@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 745 -	23 @	-)		@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760914 835 -	- @	<u>-</u>	@		@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 805 -	22 @	-)		@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760915 745 -	- @	<u> </u>	9		@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760917 800 -	21.5 @	-		- (@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	760916 805 -	- @	<u>-</u>)	- (@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780725 929 -	- @	-		- (@
	2468 PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780726 835 -	29 @	-	@	- (@

Station		Station Description	Media	Sdate	Time I	Depth 1	0	11	1	34
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780726	830		@	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780727	820		5 @	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780728	820	- 2	8 @	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	780727	815		@	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810915	855		@	-	(0)	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810916	1055	- 2	4 @	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810916	1050		@	-	@	- @
	2468	PLASTENE SUPPLY-HOLDING POND	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	810917	845	- 2	3 @	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	@	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
MO0001171		ASSOC ELECT COOP NEW MADRID /	/TYPA/IND/TREATD/OUTFL/NONAMB/PIPE	830601	-		@	-	(0)	- @
	988	PORTAGEVILLE WTP LIME POND EFF	/TYPA/MUN/PTRTMT/OUTFL/NONAMB/PIPE	741023	745	- 1	5 @	-	@	- @
	988	PORTAGEVILLE WTP LIME POND EFF	/TYPA/MUN/PTRTMT/OUTFL/NONAMB/PIPE	741024	725	- 1	5 @	-	@	- @
	988	PORTAGEVILLE WTP LIME POND EFF	/TYPA/MUN/PTRTMT/OUTFL/NONAMB/PIPE	741025	715	- 15	5 @	-	(0)	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760914	900		@	-	@	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760915	810	- 2	3 @	-	@	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760915	805		@	-	@	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760916	815	- 2	4 @	-	@	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760916	810		@	-	@	- @
	2354	CARUTHERSVILLE LAGOON EFFLUENT	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	760917	815		@	-	@	- @
	8538	CARUTHERSVILLE WWTP OUTFALL 001	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	900606	1000	- 2	5 @	-	@	- @
	8538	CARUTHERSVILLE WWTP OUTFALL 001	/TYPA/MUN/TREATD/OUTFL/NONAMB/PIPE	900605	1001		@	-	@	- @

Table B1. Databas		I							1		П																		\top		T
Station	50)	56		59		60	61		65		70		74	77		90		94		95		300		301	31	10	400)	403	1
8798		@	- @	Τ.		@	- @	- 0.	@		@		@	- @		@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2752		@	- @	_		@	- @		@		@	_	@	- @	_	@	_	@	_	@	_	@		@	- @	-	@	-	@	-	@
8730		@	- @	_		@	- @	_	@		@	_	@	- @	-	@	_	@	_	@	-	@	-	@	- @	-	@	_	@	_	@
8730		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@		@	-	@	- @	-	@	-	@		@
2356		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	440		-	@	- @		@	-	@		2 @
2356		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	480	_	-	@	- @	-	@	-	@		3 @
		@		_		@					@	-	@	- @		@		@		@	460					-			@	7.0	@
2356				_		@		-	@		@	-	@	- @	-	@	-	@	-	@	480	@	-	@	•	-	@	-	@	- 0.1	_
2356		@	•	_			•		@								-		-					@	- @	-	0	-	@		0
2469		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	450		-	@	- @		4 @	-		8.	0
2469		@	- @	_	36		- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469		@	- @	_	43		- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	420		-	@	- @		1 K	-	@	8.1	@
2469		@	- @		29		- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	<u> </u>	@
2469		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	420		-	@	- @		8 K	-	@		@
2469		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@		@
2469		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469		@	- @			@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469		@	- @			@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	7.7	7 @
2469	-	@	- @			@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@		4 @	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	7.2	2@	-	@
2469	-	@	- @	_		@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	7.31	1 @	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	7.03	3 @	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	7.37	0	-	@
2469	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
210066	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	457	@	498	@	-	@	12	@	- @	-	@	8.14	1 @	-	@
210066	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@
210066	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	454	@	470	@	-	@	13.5	@	- @	-	@	7.98	3 @	-	@
210066		@	- @	-		@	- @	-	@		@	-	@	- @	-	@	457	@	469	@	-	@	13		- @	-	@		3 @	-	@
210066		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	459		468		-	@	12.9		- @	-	@		3 @	-	@
210066		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	460		469		-	@	12.8		- @	-	@	8.01	1 @	-	@
210066		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	461		468		-	@	12.7		- @	-	@	8.01		-	@
210067		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	. @	-	@
210067		@	- @	_		@	- @	_	@		@	-	@	- @	-	@	439		606	_	-	@	13.2		- @	-	@	8.02	-	-	@
210068		@	- @	_		@	- @	-	@		@	-	@	- @	-	@		@	-	@	-	@	-	@	- @	-	@	-	@	-	@
210068		@	- @	_		@	- @	_	@		@	_	@	- @	_	@	439		519		_	@	12.5		- @	_	@	8.02		-	@
477504		@	- @	_		@	- @	-	@		@		@	- @	_	@	678			@		@	11.5		- @	-	@		3 @		@
477504		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	456		320		-	@	13.2		- @	-	@	7.88		-	@
477504		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	458		319		-	@	13.2		- @	-	@	7.84		-	@
477504		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	459		320		-	@	12.8		- @	-	@	7.83		-	@
477504		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	460		318		-	@	12.7		- @	-	@	7.81		-	@
				_																	-										
477504		@	- @			@	- @ - @	-	@		@	-	@	•	-	@	462		321		-	@	12.6		- @	-	@		3 @	-	@
477505		@	9	_		@	0	-	@		@	-	@	9	-	@	640		440		-	@	9.8		- @	-	@	7.77			@
477505		@	- @	_		@	- @	-	@		@	-	@	- @	-	@	628		442		-	@	9.8		- @	-	@	7.77		-	@
477505		@	- @			@	- @	-	@		@	-	@	- @	-	@	619	_	443	_	-	@	9.8		- @	-	@	7.77		-	@
477505	-	@	- @	-	-	@	- @	-	@	-	@	-	@	- @	-	@	609	œ	447	@	-	@	9.6	@	- @	-	@	7.74	4 @	-	@

Station	50		56		5	59	60		61		65		70		74	7	7	90		94	95	5	300		301	3	310	400		403	
477505	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	608 @	0 4	156 @	-	@	9	@	- @	-	@	7.68	@	-	@
477505	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	445 @	0 2	299 @	-	@	12.8	@	- @	-	@	7.84	@	-	@
477505	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	448 @	0 2	298 @	-	@	12.7	@	- @	-	@	7.81	@	-	@
477505	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	451 @		299 @		@	12.4	@	- @	-	@	7.78	@	-	@
477505	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	453 @	0 3	300 @	-	@	12.3	@	- @	-	@	7.76	@	-	@
477505	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	455 @	0 3	300 @	-	@	12.3	@	- @	-	@	7.76	@	-	@
477506	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	625 @	0 3	399 @	-	@	11.3	@	- @	-	@	8.07	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	624 @	0 3	399 @	-	@	11.3	@	- @	-	@	8.08	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	624 @	2	399 @	-	@	11.3	@	- @	-	@	8.08	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	624 @	0 4	100 @	-	@	11.3	@	- @	-	@	8.07	@	-	@
477506	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	623 @	0 4	101 @	-	@	11.3	@	- @	-	@	8.07	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	623 @	20 4	100 @	-	@	11.3	@	- @	-	@	8.07	@	-	@
477506	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	623 @	0 3	399 @	-	@	11.3	@	- @	-	@	8.06	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	623 @	2	399 @	-	@	11.3	@	- @	-	@	8.06	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	453 @	0 3	312 @	-	@	12.7	@	- @	-	@	7.78	@	-	@
477506	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	455 @	0 3	311 @	-	@	12.6	@	- @	-	@	7.76	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	456 @	0 3	311 @	-	@	12.5	@	- @	-	@	7.76	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	457 @	0 3	312 @	-	@	12.5	@	- @	-	@	7.75	@	-	@
477506	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	459 @	0 3	311 @	-	@	12.5	@	- @	-	@	7.74	@	-	@
477507	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- (<u> </u>	@	-	@	-	@	- @	-	@	-	@	-	@
477507	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- (<u> </u>	@	-	@	-	@	- @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	670000 @	-	@)	- (@	-	@	- @	-	@	- (<u>0</u> -	@	430	0 @	5	@	66 @	-	@	6.2	@	-	@
7024070	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- (<u>0</u> -	@	-	@	4	@	51 @		0.8 @	-	@	-	@
7024070	-	@	-	@	-	@	197000 @	-	@)	- (@	-	@	- @	-	@	- (<u> </u>	@	520	0 @	5.8	@	73 @		1.8 @	7.2	@	-	@
7024070	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- @	2) -	@	-	@	-	@	72 @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	417000 @	-	@	!	- (@	-	@	- @	-	@	- @	2) -	@	-	@	-	@	- @		2.7 @	-	@	-	@
7024070	-	@	-	@	-	@	297000 @	-	@)	- (@	-	@	- @	-	@	- @	2) -	@	-	@	-	@	- @		1.5 @	-	@	-	@
7024070	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	- @	2) -	@	470	0	9.4	@	81 @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	298000 @	-	@)	- (@	-	@	- @	-	@	- (2) -	@	-	@	-	@	- @		1.8 @	-	@	-	@
7024070	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- @	2) -	@	560	0	12.4	@	99 @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	241000 @	-	@)	- (@	-	@	- @	-	@		2) -	9		@	-	@	- @		4 @	-	@	-	@
7024070	-	@	-	@	-	@	- @	-	@)	- (@	-	@	- @	-	@	- (<u>0</u> -	@	400	0	12	@	92 @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	- @	-	@)		@		@	- @	-	@	- (<u>)</u> -	@		@	-	@	- @		2.5 @	7.5	@	-	@
7024070	-	@	-	@	-	@	- @		@			@		@	- @	-	@		<u>0</u> -	0		0	10.3	@	87 @	-	@	-	@	-	@
7024070	-	@	-	@	-	@	- @	-	@	!	- (@		@	- @	-	@		<u> </u>	@		@	-	@	- @		2.4 @	-	@	-	@
7024070	-	@	-	@	-	@	- @		@	_		@		@	- @	-	@		<u>0</u> -	@	_	@	-	@	- @		0 @		@	-	@
7024070	-	@	-	@	-	@	- @		@	_		@		@	- @	-	@		D -	@		@	-	@	- @		1.6 @		@	-	@
7024070	-	@	-	@	-	@	- @	_	@	_		@		@	- @	-	@		D -	@		0 @	6.3		72 @	-	@		@	-	@
7024070	-	@	-	@	-	@	- @		@	_		@		@	- @	-	@		D -	@		0	6.5		79 @	-	@		@	-	@
7024070	-	@	-	@	-	@	- @	_	@	_		@		@	- @	-	@		0 -	@		@	-	@	- @		1.4 @	7.8		-	@
7024070	-	@	-	@	-	@	- @		@			@		@	- @	-	@		D -	@		0 @	7.5	-	97 @	-	@	7.6	_	-	@
5600	-	@	-	@	-	@	- @		@			@		@	- @	-	@		0 -	@		@	-	@	- @	-	@		@	7.7	
5602	-	@	-	@	-	@	- @		@			@		@	- @	-	@		0 -	@		@	-	@	- @		2 K		@	7.3	_
360019089484301	-	@	-	@	-	@	- @		@			@		@	- @	-	@		D -	@		@	-	@	- @	-	@		@	-	@
360019089484301	-	@	-	@	-	@	- @		@	_		@		@	- @	-	@		0 -	@			-	@	- @	-	@		@	-	@
360032089553201	-	@	-	@	-	@	- @		@	_		@	-	@	- @	-	@		0 -	@		@	-	@	- @	-	@		@	6.4	
360320089522001	-	@	-	@	-	@	- @	_	@			@	-	@	- @	-	@		0 -	@	_	@	-	@	- @	-	@		@	-	@
360526089440601	-	@	-	@	-	@	- @	-	@	!	- (@	-	@	- @	-	@	- (0 -	@	-	@	-	@	- @	-	@	-	@	6.5	@

Station	50		56	59	a	60	61	65		70		74		77	7	90	П	94	95	300		301		310	T	400	403
360949089435001	- @		@	-	@	- @	- @	-	@	-	@	- ' '	@		@	-	@	- @	- @	-	@	-	@		@	7.3 @	- @
360949089435001	- @		@		@	- @	- @	_	@		@	_	@		@	_	@	- @	608 @	_	@	_	@		@	- @	- @
360949089435001	- @		@		@	- @	- @	_	@		@	_	@		@	_	@	- @	- @	_	@	_	@		@	7.9 @	- @
361030089425001	- @		@		@	- @	- @	_	@	-	@	-	@		@		@	- @	- @	_	@	_	@		@	7.9 @	- @
361030089425001	- @		@		@	- @	- @	_	@		@	_	@		@	_	@	- @	- @	_	@	_	@		@	7.5 @	- @
361130089394001	- @		@		@	- @	- @	_	@		@	_	@		@	_	@	- @	- @	_	@	_	@		@	- @	- @
361140089392903	- @		@		@	- @	- @	_	@		@	-	@		@		@	- @	- @	_	@	_	@		@	6.1 @	- @
361140089393001	- @		@	_	@	- @	- @	_	@		@	_	@		@	_	@	- @	- @	_	@	_	@		@	6.3 @	- @
361140089393101	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	- @	-	@	-	@		@	7.3 @	- @
361242089390401	- @		@	_	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	862 @	-	@	-	@		@	6.8 @	- @
361415089450201	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	- @	-	@	-	@		@	- @	- @
361415089450201	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	8.1 @	- @
361415089450201	- @		@	_	@	- @	- @	_	@	_	@	_	@		@	_	@	- @	- @	_	@	-	@		@	8.1 @	- @
361415089450201	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	7.8 @	- @
361415089450201	- @		@	_	@	- @	- @	-	@	_	@	-	@	_	@	_	@	- @	513 @	-	@	-	@		@	8 @	- @
361415089450201	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	470 @	l -	@	_	@		@	8 @	7.7 @
361415089450201	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	538 @	-	@	-	@		@	8.2 @	7.7 @
361415089450201	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	525 @	-	@	-	@		@	- @	- @
361418089444501	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	6.9 @	- @
361425089450701	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	- @	-	@	-	@		@	7.95 @	- @
361455089443301	- @		@	_	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- @	-	@	-	@		@	- @	- @
361455089443301	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	- @	- @
361455089443301	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	- @	-	@	-	@		@	- @	6.5 @
361920089432801	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	- @	- @
361937089343201	- @	_	@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	950 @	-	@	-	@		@	- @	- @
362100089422001	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	- @	_	@	-	@		@	7.3 @	- @
362252089420201	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	- @	-	@	-	@		@	- @	6 @
362338089364401	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	250 @	-	@	-	@		@	7.1 @	- @
362341089365701	- @		@	_	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	140 @	-	@	-	@		@	6.5 @	- @
362355089364801	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	250 @	_	@	-	@		@	7.2 @	- @
362356089364001	- @	_	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	260 @	-	@	-	@		@	7.2 @	- @
362406089365401	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	470 @	-	@	-	@		@	7.2 @	- @
362408089364301	- @		@	_	@	- @	- @	_	@		@	_	@	_	@		@	- @	420 @	-	@	-	@		@	7.3 @	- @
362419089365201	- @	_	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	440 @	-	@	-	@		@	7.3 @	- @
362440089334801	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	2400 @	-	@	-	@		@	- @	- @
362527089421101	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- @	-	@	-	@		@	6.8 @	- @
362527089421101	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- @	-	@	-	@		@	6.8 @	- @
362527089421101	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	550 @	_	@	-	@		@	7.3 @	- @
362528089414301	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	500 @	_	@	-	@		@	6 @	- @
362528089414301	- @		@	_	@	- @	- @	-	@	_	@	-	@	_	@	_	@	- @	- @	-	@	-	@		@	7.2 @	- @
362530089414001	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	- @	l -	@	_	@		@	- @	- @
362640089295301	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	937 @	-	@	-	@		@	6.9 @	- @
362718089361101	- @		@	_	@	- @	- @	-	@	_	@	-	@	_	@	_	@	- @	- @	-	@	-	@		@	- @	- @
362955089293301	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	698 @	l -	@	_	@		@	7.1 @	- @
363039089240901	- @	_	@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	865 @	-	@	-	@		@	7.1 @	- @
363107089363401	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	1400 @	-	@	-	@		@	7.6 @	- @
363107089363401	- @		@	_	@	- @	- @	_	@	_	@	_	@	_	@	_	@	- @	- @	l -	@	_	@		@	7.5 @	- @
363107089363401	- @		@	-	@	- @	- @	-	@	-	@	_	@	-	@	-	@	- @	- @	-	@	-	@		@	7.4 @	- @
33310700000401		·	<u>ت</u>			•	•	1	-				-		-		~	•		1	· •	1	0		· 1		-

Station	50		56		59		60		61	6	5	70		74		77		90		94		95		300		301		310		400		403	
363107089363401	-	@		@	-	@	-	@	- (0	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	7.7	@		@
363107089363401	-	@		@	-	@	-	@	- 0) -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	7.3	_		@
363107089363401	-	@		<u>a</u>	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@		@		@	-	@	7.3	_	-	@
363107089363401	-	@		@	-	@	-	@	- 0		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	7.4		-	@
363107089363401	-	@		@	-	@	-	@	- (0	2 -	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	-	@	7.7	@	-	@
363107089363401	-	@		@	-	@	-	@	- (0	_	@	-	@	-	@	-	@	-	@	-	@	390	@	-	@	-	@	_	@	7.1	_	-	@
363107089363401	-	@	- @	@	-	@	-	@	- @) -	@	-	@	-	@	-	@	-	@	-	@	1660	@		@	-	@	-	@	7.7	@	7.1	@
363107089363401	-	@	- @	@	-	@	-	@	- @) -	@	-	@	-	@	-	@	-	@	-	@	1750	@		@	-	@	-	@	7.7	@	8.2	@
363126089291501	-	@	- @	@	-	@	-	@	- @] -	@	-	@	-	@	-	@	-	@	-	@	588	@	-	@	-	@	-	@	7.2	@	-	@
363130089370001	-	@	- @	@	-	@	-	@	- @	} -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	1	@	-	@	7.8	@	-	@
363157089291701	-	@	- @	@	-	@	-	@	- (0	} -	@	-	@	-	@	-	@	-	@	-	@	588	@	-	@	-	@	-	@	7.2	@	-	@
363200089350001	-	@	- @	@	-	@	-	@	- (0	} -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	7.7	@	-	@
363219089310701	-	@	- @	@	-	@	-	@	- (0	} -	@	-	@	-	@	-	@	-	@	-	@	754	@	-	@	-	@	-	@	7.1	@	-	@
363447089173401	-	@	- @	@	-	@	-	@	- @) -	@	-	@	-	@	-	@	-	@	-	@	530	@	-	@	-	@		@	6.9	@	-	@
363500089320001		@	- @	@	-	@	-	@	- @) -	@	-	@	•	@	-	@	-	@	-	@	-	@	-	@	1	@	-	@	7.3	@	-	@
363517089124501	-	@	- @	@	-	@	-	@	- @) -	@	-	@	-	@	-	@	-	@	-	@	898	@	-	@	-	@	-	@	7.4	@	-	@
363523089361001	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	7.3		-	@
363523089361001	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	1200		-	@	-	@	1	@	8.4		-	@
363659089142801	-	@		@	-	@	-	@	- @) -	@	-	@	-	@	-	@	-	@	-	@	758	@	-	@	-	@	-	@	7.3	@	-	@
363827089172701	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	7.2		-	@
363827089172701	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	6.6	_	-	@
363827089172701	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	17	@	-	@	-	@	-	@	6	_	-	@
363830089173501	-	@		@	-	@	-	@	- @	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	7.2	_	-	@
363840089170001	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	6.9	_	-	@
364055089103201	-	@		@	-	@	-	@	- @	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@	6.7	@
364222089243401	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	280	@	-	@		@	-	@	7.6	_	-	@
364224089273301	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	360		-	@		@	-	@	7.6		-	@
364240089313201	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	240	_	•	@	-	@	-	@	7.2	_	-	@
364247089273401	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	345		•	@	-	@	-	@	7.6	_	-	@
364331089123701	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	•	@		@	-	@		@	6.7	@
364424089151701	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	6.3	_	-	@
364453089282401	-	@		@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@	-	@
364453089282401	-	@		@	-	@	-	@	- @	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@		@
364453089282401	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@	5.4	@
W47371	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	265	_	521	@	-	@	2.7	_		@	-	@	7.39	_	-	@
W47371	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	330	-	523		-	@	2.9			@	-	@	7.46	_		@
W47372	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	232	_	924		-	@	0.6			@	-	@	6.96	_	-	@
W47372	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	334	-	905	_	-	@	0.2	_	-	@	-	@	6.84	_		@
W47373	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	240	_	840		-	@	2.4	_		@	-	@		@		@
W47373	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	250	_	830		-	@	1.7	_		@	-	@	6.84	_		@
2363	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	- 400	@	•	@		@	-	@		@	-	@
2363	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	480	@	-	@		@	-	@		@	-	@
2363	445			@	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	470	@	-	@		@	-	@		@	-	®
2363	-	@		@	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	470	_	-	@		@	-	@		@	10.0	@
5601	-	@		@ @	-	@	-	@	- (0		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@	10.3	
989	-	@		@		@		@	•		@		@	-	@	-	@		@		@	-	@	-	@		@		@		@	- 44.0	@
989	-	@		@ @	-	@	-	@	- (@	-	@	-	@	-	@	-	@	-	@	658	_	•	@ @		@	11	_		@	11.6	_
989	-	@	- (0	@	-	@	-	@	- (<i>!</i> -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@

Station	50		56	59	9	60	61	65		70		74		7	7	90		94	95	300)	301		310	400		403
989	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	2470 @	D -	@	-	@	24 @	-	@	10.8 @
989	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (D -	@	-	@	- @	-	@	- @
989	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	2440 @	D -	@	-	@	20 @	-	@	10.9 @
990	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (D -	@	-	@	- @	-	@	- @
990	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (D -	@	-	@	2 @	-	@	11.7 @
990	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	2920 @	D -	@	-	@	10 @	-	@	11 @
990	- @		@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u> </u>	@	-	@	- @	-	@	- @
990	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	2490 @	D -	@	-	@	14 @	-	@	10.6 @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u>)</u> -	@	-	@	- @	-	@	- @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u>)</u> -	@	-	@	- @	-	@	- @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u>)</u> -	@	-	@	- @	-	@	- @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u>)</u> -	@	-	@	- @	-	@	- @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u> </u>	@	-	@	- @	-	@	- @
2353	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (<u>)</u> -	@	-	@	- @	-	@	- @
2357	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	6700 @	D -	@	-	@	- @	-	@	7.2 @
2357	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	4000 @	<u>)</u> -	@	-	@	- @	-	@	8.2 @
2358	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	930 @	<u>0</u> -	@	-	@	- @	-	@	8.3 @
2358	- @	! -	@	-	@	- @	-	-	@	-	@	-	@	-	@	-	@	- @	1000 @	<u>)</u> -	@	-	@	- @	•	@	8 @
2359	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	430 @	D -	@	-	@	- @	-	@	8.1 @
2359	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	460 @	<u>)</u> -	@	-	@	- @	-	@	8.2 @
2359	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	460 @	<u>)</u> -	@	-	@	- @	-	@	8 @
2360	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	260 @	D -	@	-	@	- @	-	@	8 @
2360	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	260 @	<u>)</u> -	@	-	@	- @	-	@	7.6 @
2361	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	400 @	D -	@	-	@	- @	-	@	7.9 @
2361	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @		<u>)</u> -	@	-	@	- @	-	@	7.9 @
2361	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @			@	-	@	- @	-	@	7.6 @
2365	- @	_	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @		D -	@	-	@	10 @	-	@	10.6 @
2365	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		D -	@	-	@	- @	-	@	- @
2365			@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @		D -	@	-	@	17 @	-	@	11.4 @
2365	- @		@	-	@	- @	- @		@	-	@	_	@	-	@	-	@	- @		0 -	@	-	@	- @	-	@	- @
2365	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	8 K	-	@	10 @
2365		_	@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		D -	@	-	@	- @	-	@	- @
2365	- @	_	@		2 @	- @	- @		@	-	@		@	-	@	-	@	- @		<u>0</u> -	@	-	@	- @	4.9	@	- @
2365			@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	- @	-	@	4.7 @
2365	- @		@	-	@	- @	- @		@	-	@	_	@	-	@	-	@	- @		0 -	@	-	@	- @	9.9	@	- @
2365	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	7.2 @	-	@	10 @
2365	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	- @	11.9		- @
2365	- @	_	@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	- @		@	12.2 @
2365	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	47 @		@	4.4 @
2365	- @	_	@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	29 @		@	6.9 @
2468	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @		0 -	@	-	@	- @	-	@	- @
2468	- @	_	@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	3 @	-	@	9 @
2468	- @		@	-	@	- @	- @		@	-	@	_	@	-	@	-	@	- @		0 -	@	-	@	- @	-	@	- @
2468	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	2 @	-	@	8.8 @
2468	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	- @	-	@	- @
2468	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	8 K	-	@	8.8 @
2468	- @		@	-	@	- @	- @		@	-	@		@	-	@	-	@	- @			@	-	@	- @	-	@	8.7 @
2468	- @	! -	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- @	- (0 -	@	-	@	- @	-	@	- @

Station		50		56		59		60	61	65		70		74		7	7	90		94		95	300		301		310	400	403
	2468	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	- @	- @
	2468	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	- @	- @
	2468	-	@	-	@	-	@	- @	- @	-	@		@	-	@	-	@	-	@	- 1	@	- @	-	@		@	- @	- @	- @
	2468	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	- @	8.8 @
	2468	-	@	-	@	-	@	- @	- @	-	@		@	-	@	-	@	-	@	- 1	@	- @	-	@		@	33 @	- @	7.5 @
	2468	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	6.7 @	- @
	2468	-	@	-	@	-	@	- @	- @		@	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	29 @	- @	7.6 @
	2468	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	8 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	1 @	8 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	2 @	- @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	. @	8 @	
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	9 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	7861.9 @	- @	- @
MO0001171		-	@	1	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	1 @	8 @	
MO0001171		-	@	17880000	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	2 K	- @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	. @	6 @	- @
MO0001171		-	@	18720000	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	6 @	
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	312.4 K	- @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	1 @	8 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	2 K	- @	
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	- @	8 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	. @	8 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	4815.4 K	- @	- @
MO0001171		-	@	1	@	-	@	- @	- @	-	@	•	@	-	@	-	@	-	@	-	@	- @	-	@	•	@	1 @	9 @	- @
MO0001171		-	@	43200	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	2 K	- @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	3.3 @	
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	8.18 @	- @
MO0001171		-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	0.7 K	- @	
	988	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	387 @	-	@	-	@	1 @	- @	
	988	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	408 @	-	@	-	@	0 @	- @	
	988	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	384 @	-	@	-	@	0 @	- @	
	2354	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	400 @	-	@	-	@	20 @	- @	
	2354	-	@	-	@	-	@	- @	1 @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	- @	- @
	2354	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	410 @	-	@	-	@	13 @	- @	
	2354	-	@	-	@	-	@	- @	1 @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	- @	
	2354	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	420 @	-	@	-	@	12 @	- @	
	2354	-	@	-	@	-	@	- @	1 @	-	@	-	@	-	@	-	@	-	@	- 1	@	- @	-	@	-	@	- @	- @	
	8538	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@		@	- @	-	@	-	@	- @	7.4 @	
	8538	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-	@	-	@	- 1	@	460 @	-	@	-	@	- @	- @	- @

Table B1.	Database																																
Station		410		500		530		600)	605		608		610		612		615		618	619		620	1	625		630	63	1	635		665	
	8798	- @	0 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	2752	- @	9 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	8730	- @	0 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	8730	- @	0 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2356	- @	9 -	. (@	59	@	-	@	-	@	-	@	-	@		@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	2356	- @	<u> </u>	. (@	51	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2356	- @	9 -	. (@	-	@	-	@		@	-	@	-	@		@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	2356	- @	0 -	. (@	44	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	9 -	. (@	4	@	-	@		@	-	@	0.18	@	-	@	-	@	- @	-	@	-	@	0.2 @	-	. @	-	@	-	@	0.2	@
	2469	- @) -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	2 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	0 -	. (@	4	@	-	@	-	@	-	@	0.4	K	-	@	-	@	- @	-	@	-	@	0.4 K		0.2 K	-	@	-	@	0.2	@
	2469	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	_	_	@	2	@	-	@	1	@	-	@	0.4			@	-	@	- @	-	@	-	@	0.4 K		0.2 @	-	@	-	@	0.2	
	2469	- @			@	-	@	-	@		@	-	@	-	@		@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	2469	- @	9 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	_	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	2469	- @	<u>)</u> -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	2469	- @	_	_	@	7	@	-	@	-	@	-	@	0.43	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	2469	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	2469	- @	0 -	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @	_		@	7	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	2469	- @	<u>)</u> -		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@
	2469	- @			@		U	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	210066	- @			@	57		-	@	0.76		-	@	0.1	@	-	@	-	@	- @	-	@	-	@	- @		3.16 @	-	@	-	@	0.25	
	210066	- @			@	54		-	@	1.6		-	@	0.09		-	@	-	@	- @	-	@	-	@	- @		2.2 @	-	@	-	@	0.23	@
	210066	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	210066	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		. @	-	@	-	@	-	@
	210066	- @	_	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	210066	- @		_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	9	-	@	-	@	-	@
	210066	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @			-	@	-	@	-	@
	210067	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	•	-	@	-	@	-	@
	210067	- @	_		@		@	-	@		@	-	@	0.01	@	-	@	-	@	- @	-	@	-	@	- @	_	0.01 @	-	@	-	@	0.12	@
	210068	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	210068	- @			@	18		-	@	0.48		-	@	0.01	@	-	@	-	@	- @	-	@	-	@	- @		0.14 @	-	@	-	@	0.08	
	477504	- @			@	54		-	@	0.26	_	-	@	0.65		-	@	-	@	- @	-	@	-	@	- @		0.55 @	-	@	-	@	0.24	_
	477504	- @	_		@	78		-	@	0.73		-	@	0.08		-	@	-	@	- @	-	@	-	@	- @		2.1 @	-	@	-	@	0.2	
	477504	- @	_	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	9	-	@	-	@	-	@
	477504	- @	_	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	•	-	@	-	@	-	@
	477504	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		•	-	@	-	@	-	@
	477504	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	_	. @	-	@	-	@	-	@
	477505	- @			@	5	_	-	@	0.31	@	-	@	0.19		-	@	-	@	- @	-	@	-	@	- @		2.4 @	-	@	-	@	0.08	@
	477505	- @	_		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		•	-	@	-	@	-	@
	477505	- @	_	_	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @		•	-	@	-	@	-	@
	477505	- @	0 -	. (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	- @	! -	. @	-	@	-	@	-	@

Station	410		500		530	600)	605		608	610		612		615		618		619)	620	625	5	630)	631	1	635	5	665
477505	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477505	-	@	-	@	16 @	-	@	0.53	@	- @	0.06	@	-	@	-	@	-	@	-	@	- @	-	@	1.4	@	-	@	-	@	0.12 @
477505	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477505	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477505	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477505	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	56 @	-	@	0.32	@	- @	0.12	@	-	@	-	@	-	@	-	@	- @	-	@	2.17	@	-	@	-	@	0.12 @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@		@	-	@		@	- @	-	@	-	@		@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	. @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	78 @	-	@	0.75	@	- @	0.05	@	-	@	-	@	-	@	-	@	- @	-	@	1.6	@	-	@	-	@	0.21 @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506		@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477506	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477507	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
477507	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070		@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	130		546		284 @	•	@		@	0.01 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.03 @
7024070	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070		_	378		68 @	•	@		@	0.08 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.16 @
7024070			740	_	434 @	-	@		@	0.06 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.09 @
7024070	112	_	370		72 @	-	@		@	0.12 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.21 @
7024070	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	103		364	_	26 @	•	@		@	0.28 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.21 @
7024070	-	@	-	@	- @	•	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070			436		178 @	•	@		@	0.48 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.09 @
7024070		@	-	@	- @	•	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	59	_	218		72 @	-	@		@	0.02 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.05 @
7024070		@	- 470	@	- @	•	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	77		470		242 @	-	@		@	- @	0.03	_	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.07 @
7024070 7024070	102	@	724	@	- @ 512 @	-	@		@	()	-	@	-	@	-	@	-	@	-	@	- @ - @	-	@	-	@	-	@	-	@	0.49 @
7024070	102	@	734	@	- @	-	@		@		-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	 -	@	-	@	- @	-	@		@	- @ - @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
7024070	112		258		32 @	-	@		@	0.03 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	0.04 @
7024070	112	@	- 236	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
5600	+ -	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	- @
5602	1 -	@	-	@	1 K	-	@		@	- @	-	@	-	@	-	@	_	@	-	@	- @	-	@	-	@	_	@	-	@	- @
360019089484301	374	@		@	- @		@		@	- @	-	@	-	@	-	@	0.07			@	- @		@	_	@	_	@		@	- @
360019089484301	-	@	-	@	- @	-	@		@	- @	-	@	-	@	-	@	- 0.07	@		@	- @	-	@	-	@		@	-	@	- @
360032089553201	 -	@	_	@	- @	-	@		@	- @	-	@	-	@	-	@	_	@		@	0.05 K		@	-	@	_	@		@	- @
360320089522001	266	@	-	@	- @		@		@	- @	-	@	_	@	_	@	0	@	-	@	- @	-	@	_	@	_	@	_	@	- @
360526089440601	-	@	_	@	- @	_	@		@	- @	-	@	_	@	-	@	-	@	_	@	0.05 K	_	@	-	@	_	@	_	@	- @
550020003 11 0001	1	۳		۳	8		٣		9	9		۳		۳		9		۳		٣	0.00 11		۳		٣		۳		۳	8

Station	410		500		530	6	00	605		608	3	610		612		615		618		619)	620	625	5	630)	631	1	635		665	П
360949089435001	388	@	-	@	- @	! -	@) -	@	-	@	-	@	-	@	-	@	0.07	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
360949089435001	-	@	-	@	- @	! -	(a		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
360949089435001	340	@	-	@	- @	! -	@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
361030089425001	80		-	@	- @	! -	@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	-	-	@
361030089425001	59		-	@	- @	! -	(a		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
361130089394001	66		-	@	- @	_	@		@	-	@	-	@	-	@	-	@	0.09		-	@	- @	-	@	-	@	-	@	-	@	-	@
361140089392903	-	@	-	@	- @		@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
361140089393001	69		_	@	- @		@		@	-	@	-	@	_	@	_	@	0.07	_	-	@	- @	-	@	_	@	-	@	-	@	-	@
361140089393101	70		_	@	- @		@		@	-	@	-	@	_	@	_	@	0.18	-	-	@	- @	-	@	_	@	-	@	-	@	-	@
361242089390401	-	@	-	@	- @		@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
361415089450201	213	@	_	@	- @		@		@	-	@	-	@	_	@	_	@	-	@	-	@	- @	-	@	_	@	-	@	-	@	-	@
361415089450201	215	_	_	@	- @	_	@		@	-	@	-	@	_	@	_	@	-	@	-	@	- @	-	@	_	@	-	@	-	@	-	@
361415089450201	-	@	_	@	- @		@	_	@	_	@		@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
361415089450201	221	@	-	@	- @	_	@		@	-	@	-	@	_	@	-	@	_	@	-	@	- @	-	@	-	@	-	@	-	@	_	@
361415089450201	-	@	_	@	- @		@		@	_	@	_	@	_	@	-	@	-	@	-	@	- @	_	@	-	@	-	@	_	@	_	@
361415089450201	242	@	-	@	- @		@		@	-	@	-	@	_	@	-	@	_	@	-	@	- @	-	@	-	@	-	@	-	@	_	@
361415089450201		@	-	@	- @		@		@	-	@	-	@	_	@	-	@	_	@	-	@	- @	-	@	_	@	-	@	-	@	_	@
361415089450201	-	@	-	@	- @		@		@	_	@	-	@	_	@	-	@	_	@	-	@	- @	_	@	-	@	-	@	-	@	-	@
361418089444501	263	@	_	@	- @		@		@	_	@	_	@	_	@	_	@ (_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
361425089450701		@	_	@	- @	_	@		@	_	@	-	@	_	@	_	@	0	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
361455089443301	-	@	-	@	- @		@		@	_	@	-	@		@	_	@	-	@	_	@	- @		@	_	@	_	@	_	@	-	@
361455089443301	_	@	_	@	- @		@		@	_	@	-	@	_	@	_	@	_	@	-	@	- @	_	@	_	@	_	@	_	@	_	@
361455089443301	_	@	_	@	- @		@		@	_	@	_	@		@	_	@	_	@	_	@	0.05 K		@	_	@	_	@		@	_	@
361920089432801	_	@	_	@	- @		@		@	_	@	-	@	_	@	_	@	_	@	-	@	0.05 K	_	@	_	@	_	@	_	-	_	@
361937089343201	_	@	_	@	- @		@ @		@	_	@	-	@		@	_	@	_	@	_	@	- @		@	_	@	_	@	_	@	_	@
362100089422001	230	@	-	@	- @	_	@		@	_	@	-	@	_	@	_	@	0	@	-	@	- @	-	@	_	@	-	@	-	@	-	@
362252089420201	-	@	_	@	- @		@		@	_	@		@	_	@	_	@	-	@	_	@	0.05 K	_	@	_	@	_	@	_	@	_	@
362338089364401	_	@	_	@	- @	_	@		@	_	@	-	@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
362341089365701	_	@	_	@	- @		@		@	_	@	-	@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
362355089364801	_	@		@	- @		@		@	_	@	_	@		@	_	@	_	@	_	@	- @		@	_	@	_	@		@	_	@
362356089364001	_	@	_	@	- @		@		@	_	@		@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
362406089365401	_	@	_	@	- @		@		@	-	@	-	@	_	@	_	@	_	@	-	@	- @	_	@	-	@	-	@	_	@	_	@
362408089364301	_	@	_	@	- @		@		@	_	@		@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
362419089365201	-	@	-	@	- @	_	@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	_	@	-	@	-	@	-	@
362440089334801	-	@	-	@	- @	_	@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
362527089421101	-	@	-	@	- @		@		@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	_	@	-	@	-	@	-	@
362527089421101	236	@	-	@	- @	_	@		@	-	@	-	@	-	@	-	@	0.23	-	-	@	- @	-	@	_	@	-	@	-	@	-	@
362527089421101	-	@	-	@	- @		@		@	-	@	-	@	_	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	_	@
362528089414301	-	@	-	@	- @	_	@	_	@	-	@	-	@	_	@	-	@	_	@	-	@	- @	-	@	-	@	-	@	-	@	_	@
362528089414301	-	@	-	@	- @		@		@	_	@	-	@	_	@	-	@ (_	@	-	@	- @	_	@	-	@	-	@	-	@	-	@
362530089414001	255	@	_	@	- @	_	@		@	_	@	_	@	_	@	_	@ (0.25	-	_	@	- @	_	@	-	@	-	@	_	@	_	@
362640089295301	-	@		@	- @	_	@		@	-	@	-	@	-	@	_	@	-	@	_	@	- @		@	-	@	-	@		@	-	@
362718089361101	-	@	-	@	- @	_	@		@	_	@	-	@	_	@	-	@	_	@	-	@	0.05 K	_	@	-	@	-	@	-	@	-	@
362955089293301	_	@	_	@	- @		@		@	_	@	_	@	_	@	_	@	_	@	_	@	- @	_	@	_	@	_	@	_	@	_	@
363039089240901	_	@		@	- @	_	@		@	-	@	-	@	-	@	_	@	-	@	_	@	- @	-	@	-	@	_	@		@	-	@
363107089363401	_	@	-	@	- @		@		@	-	@	-	@	-	@	_	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@
363107089363401	119	@	-	@	- @	_	@ @		@	-	@	-	@	-	@		@	-	@		@	- @	-	@	-	@		@		@	-	@
363107089363401	114	_	-	@	- @	_	@ @		@	-	@	-	@	-	@		@	-	@	-	@	- @		@	_	@	-	@		@	-	@
303107003303401	114	w	-	w	- @	<u> </u>	u	. [-	w	-	w	-	w	-	w	-	Y)		w	-	w	- (4)	-	w	-	w		w	-	w		w

	15 @					600		605		608	1 1	610		612		615		618	619)	620		625		630		631		635		665	
363107089363401 11	13 6	- 1	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
	15 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u>a</u>	-	@	-	@	-	@
363107089363401 11	14 @		@	-	@	-	@		@	-	@	-	@	-	@	-	@	- @	-	@	-	@		@	- (@	-	@	-	@	-	@
363107089363401 12	22 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363107089363401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363107089363401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	- (@	-	@	-	@	-	@
363107089363401 11	15 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	0.1	K	-	@	-	@
363107089363401 11	18 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	- (@	-	@	-	@	-	@
363126089291501 -	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363130089370001 11	16 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0 @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363157089291701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	- (@	-	@	-	@	-	@
363200089350001 19	98 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0.05 @		@	-	@	-	@	- (@	-	@	-	@	-	@
363219089310701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
363447089173401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363500089320001 13	35 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0 @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363517089124501 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0 @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363523089361001 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	- (@	-	@	-	@	-	@
363523089361001 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363659089142801 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0.68 @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
363827089172701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
363827089172701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363827089172701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
363830089173501 32	24 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0.68 @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
363840089170001 41	15 @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	0.07 @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364055089103201 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	5.4	@	-	@	- (<u> </u>	-	@	-	@	-	@
364222089243401 -	@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364224089273301 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
364240089313201 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364247089273401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364331089123701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	1.5	@	-	@	- (@	-	@	-	@	-	@
364424089151701 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	- (@	-	@	-	@	-	@
364453089282401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364453089282401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
364453089282401 -	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	22	@	-	@	- (@	-	@	-	@	-	@
W47371 -	@	-	@	7	@	-	@	0.07	@	-	@	0.19	@	-	@	-	@	- @	-	@	-	@	-	@	0.03	@	-	@	-	@	-	@
W47371 -	@	-	@	6	@	-	@	0.12	@	-	@	0.08	@	-	@	-	@	- @	-	@	-	@	-	@	0.02	@	-	@	-	@	0.12	@
W47372 -	@		@	25	@	-	@			-	@	0.1	@	-	@	-	@	- @	-	@	-	@	-	@	0.03	@	-	@	-	@	0.27	
W47372 -	@	-	@	38	@	-	@	0.69	@	-	@	0.16	@	-	@	-	@	- @	-	@	-	@	-	@	0.07	@	-	@	-	@	0.44	. @
W47373 -	@	-	@	38	@	-	@	1.7	@	-	@	1.48	@	-	@	-	@	- @	-	@	-	@	-	@	0.04	@	-	@	-	@	1.2	@
W47373 -	@	-	@	24	@	-	@	2.8	@	-	@	1.1	@		@	-	@	- @	-	@	-	@	-	@	0.08	@	-	@	-	@	1.9	_
2363 -	@	-	@	46	@		@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u>a</u>	-	@	-	@	-	@
2363 -	@	-	@	48	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (<u> </u>	-	@	-	@	-	@
2363 -	@	-	@	-	@		@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
2363 -	@		@	48	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@		@	- (@	-	@	-	@	-	@
5601 -	@		@	12000	@		@		@	-	@	-	@	-	@	-	@	- @	-	@	-	@		@		<u>a</u>	-	@	-	@	-	@
989 -	@		@	-	@		@		@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	-	@	-	@	-	@
989 -	@		@	680	@	-	@	-	@	-	@	4.4	@	-	@	-	@	- @	-	@	-	@	4.5	@	- (@	-	@	-	@	5.3	@
989 -	@		@	-	@	-	@		@	-	@	-	@	-	@	-	@	- @	-	@	-	@		@		<u>a</u>	-	@	-	@	-	@

Station	410		500	530)	600	605	608		610	(612	615	618		619		620	625		630	631		63	5	665
989	-	@	- @	19	6 @	- @	- @	-	@	7.9 @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	7.6 @
989	-	@	- @	-	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
989	-	@	- @	183	3 @	- @	- @	-	@	4.2 @	-	@	- @	-	@	-	@	- @	4.7	@	- @	-	@	-	@	5.6 @
990	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
990	-	@	- @	133	3 @	- @	- @	-	@	7 @		@	- @	-	@	-	@	- @	8.2	@	- @	-	@	-	@	6.3 @
990	-	@	- @	5		- @	- @	-	@	8.6 @		@	- @		@	-	@	- @	-	@	- @	-	@	-	@	7.3 @
990	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
990	-	@	- @	17	7 @	- @	- @	-	@	6.4 @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	5.9 @
2353	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2353	-	@	- @	-	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2353	-	@	- @	-	@	- @	- @	-	@	0.4 K	-	@	- @	-	@	-	@	- @	0.5	@	0.9 @	-	@	-	@	56 @
2353	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2353	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2353	-	@	- @	-	@	- @	- @	-	@	0.4 @	-	@	- @	-	@	-	@	- @	0.4	@	0.2 K	-	@	-	@	165 @
2357	-	@	- @	34	4 @	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2357	-	@	- @	10	0 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2358	-	@	- @	2	7 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2358	-	@	- @	50	0 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2359	-	@	- @	48	3 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	0.5	@	- @	-	@	-	@	0.2 @
2359	-	@	- @	48	3 @	- @	- @	-	@	0.4 K	-	@	- @	-	@	-	@	- @	0.4	K	0.3 @	-	@	-	@	0.5 @
2359	-	@	- @	49	9 @	- @	- @	-	@	0.4 K	-	@	- @	-	@	-	@	- @	0.4	K	0.4 @	-	@	-	@	0.4 @
2360	-	@	- @	39	9 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2360	-	@	- @	18	3 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2361	-	@	- @		3 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2361	-	@	- @		3 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2361	-	@	- @	,	5 @	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	94	4 @	- @	- @	-	@	0.39 @	-	@	- @	-	@	-	@	- @	1.9	@	5 @	-	@	-	@	0.2 @
2365	-	@	- @	-	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	1	7 @	- @	- @		@	0.6 @	-	@	- @	-	@	-	@	- @	2	@	5.3 @	-	@	-	@	0.6 @
2365	-	@	- @	-	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	5	1 @	- @	- @	-	@	0.4 K	-	@	- @	-	@	-	@	- @	1	@	3.8 @	-	@	-	@	1.2 @
2365	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	9	4 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	-	@	- @	- @	1	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	6	0 @	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	-	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	6	3 @	- @	- @	-	@	- @	! -	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	99	9 @	- @	- @	-	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2365	-	@	- @	:	2@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2468	-	@	- @	-	@	- @	- @	-	@	- @			- @		@	-	@	- @	-	@	- @	-	@	-	@	- @
2468	-	@	- @		5 @	- @	- @	-	@	4.3 @		@	- @	-	@	-	@	- @	6.1	@	- @	-	@	-	@	3.4 @
2468	-	@	- @	-	@	- @	- @	1	@	- @	-	@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2468	-	@	- @		9 @	- @	- @	-	@	3.8 @		@	- @	-	@	-	@	- @	6.8	@	33 @	-	@	-	@	2.1 @
2468	-	@	- @	l -	@	- @	- @	-	@	- @		@	- @	-	@	-	@	- @	-	@	- @	-	@	-	@	- @
2468	-	@	- @		4 @	- @	- @	-	@	3.3 @		@	- @	-	@	-	@	- @	6.1	@	37 @	-	@	-	@	1.6 @
2468	-	@	- @		5 @	- @	- @	-	@	- @	! -	@	- @		@	-	@	- @	-	@	- @	-	@	-	@	- @
2468	-	@	- @	-	@	- @	- @	-	@	- @	-	@	- @	1 - 1	@	-	@	- @	-	@	- @	-	(0)	-	@	- @

Station		410		500)	530		600)	605		608	3	610)	612		615		618	6	19	62	0	625		630		631	\neg	635		665	
	2468	-	@	-	@	15	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (0	<u>)</u> -		@
	2468	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@		@	- (@ -	- (0	0 -		@
	2468	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -		@
	2468	-	@	-	@	5	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (0	0 -	-	@
	2468	-	@	-	@	60	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -		@
	2468	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (0	<u>)</u> -	-	@
	2468	-	@	-	@	23	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -	-	@
	2468	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -	-	@
MO0001171		-	@	-	@	1	@	-	@	1	@	-	@		1 @	-	@	-	@	- @	-	@	-	@	-	@	1 (@	- (@ -	- (0	1	@
MO0001171		-	@	-	@	97	@	-	@	1	K	-	@	0.	1 K	-	@	-	@	- @	-	@	-	@	-	@	1.5	@	- (@ -	- @	0	0.37	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- @	0 -	-	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- @	0 -	-	@
MO0001171		-	@	-	@	381302	@	-	@	3931	K	-	@	393.	1 K	-	@	-	@	- @	-	@	-	@	-	@	5896.4	@	- (@ -	- @	0 1	454.5	@
MO0001171		-	@	-	@	1	@	-	@	-	@	-	@		1 @	-	@	-	@	- @	-	@	-	@	-	@	1	@	- (@ -	- @	<u> </u>		@
MO0001171		-	@	-	@	8	@	-	@	-	@	-	@	0.3	3 @	-	@	-	@	- @	-	@	-	@	-	@	1.22	@	- (@ -	- (9 -	-	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -	-	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- @	<u>)</u> -	-	@
MO0001171		-	@	-	@	1250	@	-	@	-	@	-	@	46.9	9 @	-	@	-	@	- @	-	@	-	@	-	@	190.6	@	- (@ -	- (9 -	-	@
MO0001171		-	@	-	@	1	@	-	@	1	@	-	@		1 @	-	@	-	@	- @	-	@	-	@	-	@	1 (@	- (@ -	- (0	1	@
MO0001171		-	@	-	@	96	@	-	@	1	K	-	@	0.	1 K	-	@	-	@	- @	-	@	-	@	-	@	1.64	@	- (@ -	- @	0	0.07	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- @	0 -		@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -	-	@
MO0001171		-	@	-	@	231139	@	-	@	156.2		-	@	240.8	3 K	-	@	-	@	- @	-	@	-	@	-	@	3948.6	@	- (@ -	- (0	10.9	
MO0001171		-	@	-	@	1)	-	@		@	-	@		1 @	-	@	-	@	- @	-	@	-	@	-	@		@	- (@ -	- (0		@
MO0001171		-	@	-	@	86	@	-	@	1	K	-	@		1 K	-	@	-	@	- @	_	@	-	@	-	@	0.53	@	- (@ -	- @		0.05	@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@	-	@	-	@		@	- (@ -	- @	_		@
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	- (@ -	- @			@
MO0001171		-	@	-	@	31	_	-	@	0.4		-	@	0.4	1 K	-	@	-	@	- @		@	-	@	-	@		@		@ -	- @		0.02	
	988	-	@	-	@	600		-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@	-	@	-	@	- (@	- (@ -	- @	_	•	@
	988	-	@	-	@	808	_	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@	-	@	-	@		@		@ -		<u>)</u> -		@
	988	-	@	-	@	540	_	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@		@ -	- @		•	@
	2354	-	@	-	@	48	_	-	@	-	@	-	@	0.	_	-	@	-	@	- @	_	@	-	@	1.7			@	- (@ -	- @	_	2.8	
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@	-	@	-	@		@		@ -		<u>)</u> -		@
	2354	-	@	-	@	58	_	-	@	-	@	-	@	0.4		-	@	-	@	- @		@	-	@	2	@	0.2 ł	_		@ -	- @	_	3.6	
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@		@ -	- (•	@
	2354	-	@	-	@	52	_	-	@	-	@	-	@	0.4	_	-	@	-	@	- @	_	@	-	@	1.4	_	0.1 l	<		@ -	- (_	2.6	
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@		@ -	- (_	•	@
	8538	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@		@ -	- (•	@
	8538	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	- (@	- (@ -	- (<u>)</u> -	-	@

Table B1.	Databass																															
Station	Databast	666		671			680	681		685	687		690		1045		1046		39530		39540		39570		39600		39601		39630)	39730	39740
Otation	8798	-	@	-	@	_	@	-	@	- @	-	@	-	@	-	@		@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2752	-	@		@	-	@		@	- @	-	@	_	@	-	@	_	@	-	@	-	@	-	@	_	@		@		@		<u> </u>
	8730		@	_	@	_	@	_	@	- @	_	@	_	@	-	@	-	@	_	@	_	@	_	@	-	@		@	_	@		<u> </u>
	8730	_	()	-	@	_	@	_	@	- @	-	@	_	@	_	@	-	@	-	@	_	@	_	@	-	@		()	-	@		<u> </u>
	2356		@	-	@	-	@		@	- @		@	-	@		@	-	@		@	-	@	-	@	-	@		@	-	@		<u>. </u>
	2356		@	-	@	-	@		@	- @	-	@	_	@		@	-	@	-	@		@		@	_	@		@	-	@		<u> </u>
	2356		@	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2356		@	-	@	-	@	-	@	- @	-	@	-	@		@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>. </u>
	2469		@	-	@	-	@	-	@	- @	-	@	_	@		@	_	@	-	@		@	_	@	_	@		@	-	@		<u> </u>
	2469		@	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469		@	-	@	-	@		@	- @	-	@	-	@		@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>. </u>
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>. </u>
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>.</u> 0 -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>.</u> 0 -
	2469	-			@				@				-			@				@		@			-			@				
—	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@		@	-	@		@ - @ -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		<u>u</u> - @ -
	2469	-							@			_	-			@				@		_				@		@				
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ - @ -
		-	@	-		-	@				-	@	-	@	-					_	-	@								@		
	2469	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		9
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	93	_	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@	63		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469	-	@	-	@	-	@	-	@	- @	-	@	-	@		@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	2469	-	@	-	@	-	@	-	@	- @		@	-	@	450		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@		4 @		2 @	43 @		@	-	@	1500		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@		4.2 @	4.1	@	35 @		@	-	@	930		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210066	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210067	-	@	-	@	-	@	-	@	- @	38		-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210067	-	@	-	@		5.2 @	4.9	@	77 @	45		-	@	330		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
L	210068	-	@	-	@	-	@	-	@	- @	48		-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	210068	-	@	-	@		4.3 @		1 @	73 @		K	-	@	120		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	477504	-	@	-	@		3.6 @		0	33 @		@	-	@	1400		-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	477504	-	@	-	@		3.5 @		6 @	25 @	-	@	-	@	1600		-	@	-	@	-	@	-	@	-	@	-	@	-	@		@ -
	477504	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	477504	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	477504	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@ -
	477504	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@		@ -
	477505	-	@	-	@		3.8 @	3.9	@	40 @	23		-	@	520		-	@	-	@	-	@	-	@	-	@	-	@	-	@		@ -
	477505	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@ -
	477505	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@ -
1	477505	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- (@ -

Station 6	666		671		680		681	685	:	687	690	1045		1046		39530		39540		39570	39600	30	601	\neg	39630		39730	39740
477505 -		@		@	- 000	@	- @		@	- @	- @				@	-	@	-	@	- @		@ -		@	-	@		@ -
477505 -		@		@	3.4		4.1 @		@	25 @	- @				@	-	@	-	@	- @		@ -		@	-	@		@ -
		@		@	3.4	@	- @		@	- @	- @		_		@	-		-	@	- @		@ -		_		@		@ -
477505 - 477505 -		@		@	_	_	- @		@				•		@	-	@	-	@	- @		@ -		@	-	_		
					-	@		_	_	- @			_			-		-				_		_		@		@ -
477505 -		@		@	-	@	- @	_	@	- @	- @		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477505 -		@		@	- 25	@	- @		@	- @	6		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	3.5	_	3.6 @		@	8 @	- @		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @	_	@	- @	- @		•	_	@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @	_	@	- @	- @		_		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -	_	@		@	-	@	- @	_	@	- @	- @		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -	_	@		@	-	@	- @	_	@	- @	- @		_	_	@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @		@	- @	- @		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @	_	@	- @	- @		_		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @		@	- @	- @		•		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	3.5		3.6 @	_	@	52 @	- @		_	_	@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@	-	@	-	@	- @	-	@	- @	- @		\sim	-	@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@	-	@	-	@	- @		@	- @	- @		_	-	@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @	_	@	- @	- @		9		@	-	@	-	@	- @		@ -		@	-	@		@ -
477506 -		@		@	-	@	- @	_	@	- @	- @		_	_	@	-	@	-	@	- @		@ -		@	-	@		@ -
477507 -		@	-	@	-	@	- @		@	39 @	- @	-	@	-	@	-	@	-	@	- @		@ -		@	-	@		@ -
477507 -	-	@	-	@	-	@	- @	-	@	55 @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@		@		@	- @	-	@ -		@	-	@	-	. @
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@		@		@	- @	-	@ -		@	-	@	-	. @
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@		@		@	- @	-	@ -		@	-	@	-	. @
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@		@		@	- @	-	@ -		@	-	@	-	. @
7024070 -	-	@	-	@	=	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -		@	-	@	-	@	- @	_	@	- @	- @	-		-	@	-	@	-	@	- @		@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	@	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-		-	@	-	@	-	@	- @		@ -		@	-	@	-	@ -
7024070 -		@		@	-	@	- @		@	- @	- @		-		@	-	@	-	@	- @		@ -		@	-	@		@ -
7024070 -	-	@	-	@	-	@	- @	-	@	- @	- @	-	_	-	@	-	@	-	@	- @	-	@ -		@	-	@	-	@ -
7024070 -	_	@		@	-	@	- @	_	@	- @	- @		_	_	@	-	@	-	@	- @		@ -		@	-	@		@ -
5600 -	_	@		@	-	@	- @		@	- @	- @		-		@	-	@	-	@	- @		@ -		@	-	@		@ -
5602 -	_	@		@	-	@	- @	_	@	- @	- @		_		@	-	@	-	@	- @		@ -		@	-	@		@ -
360019089484301 -		@		@	_	@	- @		@	- @	- @		_		@	_	@	_	@	- @		@ -		@	_	@		@ -
360019089484301 -		@		@	_	@	- @	_	@	- @	- @		_	_	@	_	@	_	@	- @		@ -		@	_	@		@ -
360032089553201 -	_	@		@	_	@	- @	_	@	- @	- @				@	0.05		-	@	0.05 K	0.05			@	0.5	_	0.01	_
		_		_		(_	_			_		_		_					_		_				
360320089522001 -	- 1	@	-	@	-	@	- @	-	@	- @	- l@	1	@	-	@	-	@	-	@	- @	- 1	@ -	1	@	-	@	- 1	@ -

Station	666		671		680		681	6	85		687		690		1045	1046		39530		39540		39570	39600	3960	1	39630)	39730	1	39740
360949089435001	-	@	-	@	-	@		0 -		@		20		@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
360949089435001		@	_	@	_	@		0 -		@		<u>2</u>		@	13 @	_	@	_	@	_	@	- @			@	-	@		@	_
360949089435001		@	-	@	_	@		0 -	_	@		2) 2)		@	7000 @	-	@	_	@	_	@	- @			@	_	@		@	
361030089425001	_	@	-	@	_	@		0 -	_	@		<u>2</u>		@	340 @	-	@	-	@	_	@	- @			@	_	@		@	
361030089425001	_	@	-	@	_	@		<u> </u>	_	@		<u>2</u>		@	3700 @	-	@	-	@	_	@	- @			@	-	@		@	-
361130089394001	-	@		@	-	@		0 -	_	@	_	<u>2</u> 20		@	- @	-	@	-	@	-	@	- @		_	@	-	@		@	
361140089394001	-	@	-	@	-	@		0 -	_	@		<u>2</u>		@	5 @	-	@	-	@	-	@	- @			@	-	@		@	-
	-	@	-	@	-	_				@		_		_		-	@	-	@	-	@	- @			@	-				
361140089393001 361140089393101	-	@	-	@	-	@		Q - Q -	_	@		<u>0</u>		@	- @		@	-	@	-	@	- @			@	-	@		@	-
361140089393101	-	@	-	@	-	@		<u> </u>		@		<u>D</u>		@	- @	700	@	-	@	-	@	- @			@	-	@		@	
	-			@	-	_			_			_		_	- @	600	_	-		-				_						
361415089450201	-	@	-	(-	@		0 -	_	@		<u>0</u>		@	_	- 600	@	-	@	-	@	- @	_		@	-	@		@	-
361415089450201	-	@		@	-	@		>		@		<u>0</u>		@	200 @		@	-	@		@	•			@	-	@		@	-
361415089450201	-	@	-	@	-	@		9 -	_	@		<u>0</u>		@	0.2 @	-	@	-	@	-	@	- @		_	@	-	@		@	-
361415089450201	-	@	-	@	-	@		0 -	_	@		<u>0</u>		@	100 @	-	@	-	@	-	@	- @			@	-	@		@	-
361415089450201	-	@	-	@	-	@		,	_	@		<u>0</u>		@	0 @		@	-	@	-	@	•			@	-	@		@	-
361415089450201	-	@	-	@	-	@		9 -	_	@		<u>0</u>		@	- @	54	@	-	@	-	@	- @		_	@	-	@		@	-
361415089450201	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	- @	48	@	-	@	-	@	- @			@	-	@		@	-
361415089450201	-	@	-	@	-	@		0 -	_	@		<u>0</u>		@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
361418089444501	-	@	-	@	-	@		9 -		@		<u>0</u>		@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
361425089450701	-	@	-	@	-	@		9 -	_	@		20		@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
361455089443301	-	@	-	@	-	@		0 -	_	@		<u>0</u>		@	- @	-	@	0.05		-	@	0.05 K	0.05 K		@	0.5		0.01		0.01
361455089443301	-	@	-	@	-	@		0 -	_	@		<u>0</u>		@	- @	-	@	0.05		-	@	0.05 K	0.05 K	_	@	0.5		0.01		0.01
361455089443301	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	13300 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
361920089432801	-	@	-	@	-	@		0 -	_	@		20		@	- @	-	@	0.05		-	@	0.05 K	0.05 K	_	@	0.5	_	0.01		0.01
361937089343201	-	@		@	-	@		0 -	_	@		20		@	- @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362100089422001	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	- @	-	@	-	@	-	@	- @	- @	_	@	-	@		@	-
362252089420201	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	2080 @	-	@	0.05		-	@	0.05 K	0.05 K		@	0.5		0.01		0.01
362338089364401	-	@	-	@	-	@		0 -	_	@		20		@	9 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362341089365701	-	@	-	@	-	@		2 -	_	@		20		@	- @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362355089364801	-	@	-	@	-	@	- (_	_	@		<u>D</u>		@	5 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362356089364001	-	@	-	@	-	@		0 -		@		<u>D</u>		@	8 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362406089365401	-	@	-	@	-	@		2 -	_	@		<u>D</u>		@	7 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362408089364301	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	8 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362419089365201	-	@	-	@	-	@		2 -		@		<u>D</u>		@	9 @	-	@	-	@	-	@	- @	- @		@	-	@		@	-
362440089334801	-	@	-	@	-	@	- (_	_	@		<u>D</u>		@	0.6 @	-	@	-	@	-	@	- @	- @	_	@	-	@		@	-
362527089421101	-	@	-	@	-	@		0 -	_	@		<u>D</u>		@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
362527089421101	-	@	-	@	-	@		0 -	_	@	- (20	-	@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
362527089421101	-	@	-	@	-	@	- (<u> </u>		@	- (20	-	@	4 @	-	@	-	@	-	@	- @		_	@	-	@		@	-
362528089414301	-	@	-	@	-	@	- (<u> </u>		@	- (20	-	@	- @	-	@	-	@	-	@	- @			@	-	@		@	-
362528089414301	-	@	-	@	-	@	- (<u> </u>		@	- (20	-	@	3 @	-	@	-	@	-	@	- @			@	-	@	-	@	-
362530089414001	-	@	-	@	-	@	- (<u> </u>		@	- (<u>D</u>	-	@	- @	-	@	-	@	-	@	- @	- @] -	@	-	@		@	-
362640089295301	-	@	-	@	-	@	- (0 -		@	- (<u>D</u>	-	@	- @	450	@	-	@	-	@	- @	- @] -	@	-	@	-	@	-
362718089361101	-	@	-	@	-	@	- (9 -		@	- (<u>D</u>	-	@	- @	-	@	0.05	K	-	@	0.05 K	0.05 K	-	@	0.5	K	0.01	K	0.01
362955089293301	-	@	-	@	-	@	- (<u> </u>		@	- (<u>D</u>	-	@	- @	-	@	-	@	-	@	- @	- @) -	@	-	@	-	@	-]
363039089240901	-	@	1	@	-	@	- (9 -		@	- (2)	-	@	- @	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-
363107089363401	-	@	•	@	-	@	- (9 -		@	- (<u>D</u>	-	@	- @	-	@	-	@	-	@	- @	- @) -	@	-	@	-	@	-
363107089363401	-	@	•	@	-	@	- (0 -		@	-	<u>D</u>	-	@	1100 @	-	@	-	@	-	@	- @	- @) -	@	-	@	-	@	-
363107089363401	•	@	•	@	-	@	- (0 -		@	-	<u>D</u>	-	@	2000 @	-	@	-	@	-	@	- @	- @	-	@	-	@	-	@	-

Station	666	:	671		680		681	685	:	687		690		1045	1046		39530		39540		39570	39600	1	39601		39630		39730		39740
363107089363401	-	@	-	@	-	@	- @		@	-	@	-	@	600 @	-	@	-	@	-	@	- @			-	@	-	@	- 33730	@	- 33140
363107089363401		@	_	@	_	@	- @		@	_	@	_	@	1300 @	-	@	_	@	_	@	- @		_	-	@		@		@	
363107089363401		@		@	_	@	- @	_	@		@	-	@	3000 @	-	@	-	@	-	@	- @		-	-	@	-	@		@	
363107089363401	-	@	-	@	-	@	- @		@		@	-	@	700 @	-	@	-	@	-	@	- @			-	@	-	@		@	-
363107089363401	-	@	-	@	_	@	- @		@		@	-	@	0.6 @	-	@	-	@	-	@	- @		_	-	@	-	@		@	
	-	_	-	_	-	@	- @	_	@	-	@	-	@	6 @		@	-	@	-	@			_	-		-	@	-	@	-
363107089363401	- 0.01	@	-	@	-	@	- @			-		-	_		990	@	-		-	_	•		_	-	@	-		-	@	-
363107089363401	0.01	_		@		_			@	-	@		@	- @		_	-	@		@	•		•		@		@			-
363107089363401	-	@	-	@	-	@	- @		@	-	@	-	@	- @	250	@	-	@	-	@	- @		9	-	@	-	@	-	@	-
363126089291501	-	@	-	@		@	9		@	-	@	-	@	•	-	@	-	@	-	@	•		•	-	@	-	@	-	@	-
363130089370001	-	@		@	-	_			@	-			@	•		@	-	@		@	•		•		@					-
363157089291701	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		۳	-	@	-	@	-	@	-
363200089350001	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		•	-	@	-	@	-	@	-
363219089310701	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		۳	-	@	-	@		@	-
363447089173401	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		9	-	@	-	@	-	@	-
363500089320001	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
363517089124501	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		۳	-	@	-	@	-	@	-
363523089361001	-	@	-	@	-	@	- @		@	-	@	-	@	3 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
363523089361001	-	@	-	@	-	@	- @		@	-	@	-	@	0 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
363659089142801	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		9	-	@	-	@	-	@	-
363827089172701	-	@	-	@	-	@	- @		@	-	@	-	@	16 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
363827089172701	-	@	-	@	-	@	- @		@	-	@	-	@	19 @	-	@	-	@	-	@	- @		_	-	@	-	@	-	@	-
363827089172701	-	@	-	@	-	@	- @	_	@	-	@	-	@	0.8 @	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
363830089173501	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
363840089170001	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		۳	-	@	-	@		@	
364055089103201	-	@	-	@	-	@	- @	_	@	-	@	-	@	80 @	-	@	0.05		-	@	0.05 K	0.05 l		-	@	0.5		0.01		0.01
364222089243401	-	@	-	@	-	@	- @		@	-	@	-	@	0.3 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
364224089273301	-	@	-	@	-	@	- @	_	@	-	@	-	@	8 @	-	@	-	@	-	@	- @		۳	-	@	-	@	-	@	-
364240089313201	-	@	-	@	-	@	- @		@	-	@	-	@	3 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
364247089273401	-	@	-	@	-	@	- @		@	-	@	-	@	8 @	-	@	-	@	-	@	- @		~	-	@	-	@	-	@	-
364331089123701	-	@	-	@	-	@	- @	_	@	-	@	-	@	130 @	-	@	0.05		-	@	0.05 K	0.05 l		-	@	0.5	_	0.01		0.01
364424089151701	-	@	-	@	-	@	- @		@	-	@	-	@	13 @	-	@	-	@	-	@	- @		٥	-	@	-	@		@	-
364453089282401	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	0.05		-	@	0.05 K	0.05	_	-	@	0.5	_	0.01		0.01
364453089282401	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	0.05		-	@	0.05 K	0.05 l		-	@	0.5	_	0.01		0.01
364453089282401	-	@	-	@	-	@	- @		@	-	@	-	@	50 K	-	@	-	@	-	@	- @		٥	-	@	-	@		@	-
W47371	-	@	-	@	1.1	@	- @	_	@	-	@	-	@	4600 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
W47371	-	@	-	@	1.4	_	- @	_	@	-	@	-	@	3400 @	-	@	-	@	-	@	- @		9	-	@	-	@	-	@	-
W47372	-	@	-	@	1.6		- @			-	@	-	@	13000 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
W47372	-	@	-	@	2.1	@	- @	_		-	@	-	@	12000 @	-	@	-	@	-	@	- @		۳	-	@	-	@	-	@	-
W47373	-	@	-	@	4.1	@	- @			-	@	-	@	18000 @	-	@	-	@	-	@	- @		_	-	@	-	@	-	@	-
W47373	-	@	-	@	4	@	- @	_	_	-	@	-	@	17000 @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
2363	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		9	-	@	-	@	-	@	-
2363	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
2363	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		_	-	@	-	@	-	@	-
2363	-	@	-	@	-	@	- @	_	@	-	@	-	@	- @	-	@	-	@	-	@	- @		۳	-	@	-	@	-	@	-
5601	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		٥	-	@	-	@	-	@	-
989	-	@	-	@	-	@	- @		@	-	@	-	@	- @	-	@	-	@	-	@	- @		•	-	@	-	@	-	@	-
989	-	@	-	@	-	@	- @	-	@	-	@	-	@	550 @	-	@	-	@	-	@	- @	- (@	-	@	-	@	-	@	-
989	-	@	-	@	-	@	- @	-	@	-	@	-	@	- @	-	@	-	@	-	@	- @	- (@	-	@	-	@	-	@	-

Station	666	6	671		680		681	685	5	687		690	1045		1046		39530		39540		39570	39600)	39601		39630		39730		39740
989	-	@	-	@	-	@	- @		@	- @	!	- @	900	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
989	_	@	-	@	_	@	- @	-	@	- @		- @	-	@	-	@	_	@	-	@	- @		@	-	@	-	@		@	-
989	-	@	-	@	_	@	- @	l -	@	- @		- @	910		-	@	-	@		@	- @		@	-	@	-	@		@	_
990	_	@	-	@	_	@	- @	-	@	- @	_	- @	- 010	@	-	@	_	@	_	@	- @		@	-	@	-	@		@	_
990		@	-	@	_	@	- @	_	@	- @	_	- @	1380		-	@		@	_	@	- @		@	_	@	-	@		@	_
990		@	-	@	_	@	- @	-	@	- @		- @	450		-	@		@		@	- @		@	-	@	-	@		@	_
990		@	-	@	-	@	- @		@	- @	_	- @		@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
	-			@		@		_	_		_		430			@	-													
990	-	@	-	_	-		- @		@	•	_	- @			-		-	@	-	@	•		@	-	@	-	@		@	-
2353	-	@	-	@		@	- @	_	@	•		- @	1730		-	@	-	@	-	@	•		@		@	-	@		@	-
2353	-	@	-	@	-	@	- @	-	@	- @	_	- @	250		-	@	-	@	•	@	- @		@	-	@	-	@		@	-
2353	-	@	-	@	-	@	- @	-	@	- @		- @	400		-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2353	-	@	-	@	-	@	- @	-	@	- @	_	- @	680		-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2353	-	@	-	@	-	@	- @	-	@	- @	_	- @	210		-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2353	-	@	-	@	-	@	- @	-	@	- @	_	- @	730		-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2357	-	@	-	@	-	@	- @	-	@	- @	_	- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2357	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2358	-	@	-	@	-	@	- @	-	@	- @		- @	760		-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2358	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2359	-	@	-	@	-	@	- @	-	@	- @	!	- @	1000	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2359	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2359	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2360	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2360	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2361	_	@	-	@	_	@	- @	-	@	- @		- @	-	@	-	@	_	@	-	@	- @		@	-	@	_	@	-	@	_
2361	-	@	-	@	_	@	- @	-	@	- @	_	- @	-	@	-	@	-	@		@	- @		@	-	@	_	@	_	@	_
2361	-	@	-	@	_	@	- @	-	@	- @		- @	-	@	-	@	-	@		@	- @		@	-	@	_	@	_	@	_
2365		@	-	@	_	@	- @	-	@	- @		- @	530		-	@	_	@	_	@	- @		@	-	@	-	@	_	@	_
2365		@	-	@	_	@	- @	-	@	- @	_	- @	- 330	@	-	@		@		@	- @		@	-	@	-	@		@	_
2365		@	-	@	_	@	- @		@	- @	_	- @	290		-	@		@	-	@	- @		@	-	@	-	@		@	_
2365		@		@	_	@	- @	-	@	- @		- @	230	@	-	@		@	-	@	- @		@	-	@	-	@		@	_
	-	@	-		-				@		_		170		-	@		@	-		- @		@	-	@	-	@	-	@	_
2365	-		-	@		@	9		_	•	_	•	170				-			@							_			
2365	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2365	-	@	-	@	-	@	- @	-	@	- @	_	- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2365	-	@	-	@	-	@	- @	-	@	- @	_	- @		@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2365	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2365	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2365	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2365	-	@	-	@	-	@	- @	-	@	- @	_	- @		@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2365	-	@	-	@	-	@	- @	-	@	- @	_	- @		@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2365	-	@	-	@	-	@	- @	-	@	- @	_	- @	1370	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2468	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@	-	@	-
2468		@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@		@	-	@	- @	-	@	-	@	-	@	-	@	-
2468	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2468	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2468	-	@	-	@	-	@	- @	-	@	- @	!	- @	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-
2468	-	@	-	@	-	@	- @	-	@	- @	_	- @	-	@	-	@	_	@	-	@	- @		@	-	@	-	@		@	-
2468	-	@	-	@	-	@	- @	-	@	- @	_	- @	40	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2468	-	@	-	@	-	@	- @	-	@	- @		- @	-	@	-	@	-	@	-	@	- @		@	-	@	-	@		@	-
2 100		ت	L	٠	L	ت ا		1	۳			9	1	$\overline{}$		$\overline{}$		ت		$\overline{}$		1	۳		J				_	!

Station		666	;	671		680		681	ı	685		687		690		1045	1046		39530		39540		39570	39600		39601	3963	10	39730)	39740
O LOLLIOTT	2468	-	@	-	@		@	-	@	-	@	-	@		@	25 K		@		@		@	- @	-	@	- @		@	-	@	-
	2468		@		@		@		@		@		@		@	-	20 -	@		@	_	@	- @	_	@	- @		@	_	@	—
	2468		@		@		@		@		@		@		@		<u> </u>	@		@	_	@	- @	_	@	- @		@	_	@	_
	2468	_	@	_	@		@	_	@	_	@	_	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
	2468		@		@		@		@		@	_	@		@	548 @	_	@		@	_	@	- @	_	@	- @	_	@	_	@	—
	2468		@		@		@		@	_	@	_	@		@		<u> </u>	@		@	_	@	- @	_	@	- @	_	@	_	@	_
	2468	_	@	_	@		@	_	@	_	@	-	@		@	504 @	_	@		@	-	@	- @	-	@	- @		@	-	@	_
	2468	_	@		@		@	_	@	_	@	_	@		@		20 -	@		@	-	@	- @	_	@	- @	_	@	_	@	_
MO0001171	2400	_	@		@		@	_	@	_	@	-	@		@		<u> </u>	@		@		@	- @	_	@	- @		@	_	@	_
MO0001171		_	@	_	@	10	_	_	@	_	@	-	@		@	3700 @		@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		_	@		@		@	_	@	_	@	_	@		@		20 -	@		@	-	@	- @	_	@	- @		@	_	@	_
MO0001171		-	@	-	@		@	-	@	_	@	-	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		_	@	_	@	39309.5	_	_	@	_	@	_	@		@	14545 @	_	@		@	_	@	- @	-	@	- @		@	-	@	-
MO0001171		-	@	-	@		@	-	@	_	@	-	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		_	@	_	@	4	_	_	@	_	@	_	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		-	@	-	@		@	-	@	_	@	-	@		@		<u> </u>	@		@	-	@	- @	-	@	- @	_	@	-	@	-
MO0001171		_	@	-	@		@	_	@	_	@	-	@		@		<u> </u>	@		@	-	@	- @	_	@	- @		@	_	@	_
MO0001171		_	@	_	@		@	_	@	_	@	-	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		_	@	-	@		@	_	@	_	@	-	@		@	1 @	_	@		@	-	@	- @	-	@	- @	_	@	-	@	-
MO0001171		-	@	-	@	10	_	-	@	-	@	-	@		@	760 @		@		@	-	@	- @	-	@	- @	_	@	-	@	-
MO0001171		-	@	-	@		@	-	@	-	@	-	@		@		20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		-	@	-	@	-	@	-	@	-	@		@	-	@	- @	Q -	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
MO0001171		-	@	-	@	24076.9	_	-	@	-	@	-	@		@	119 @	_	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		-	@	-	@	1	@	-	@	-	@	-	@		@	1 @	Q -	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
MO0001171		-	@	-	@	1	K	-	@	-	@	-	@		@	20300 @	20 -	@		@	-	@	- @	-	@	- @		@	-	@	-
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	20 -	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
MO0001171		-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
MO0001171		-	@	-	@	0.4	K	-	@	-	@	-	@	-	@	7 @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	988	-	@	-	@	-	@	-	@	-	@	-	@	-	@	104000 @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	988	-	@	-	@	-	@	-	@	-	@	-	@	-	@	298000 @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	988	-	@	-	@	-	@	-	@	-	@	-	@	-	@	58000 @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	-	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-
	2354	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	-	@	-	@	- @	-	@	- @	-	@	-	@	-
	8538	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	-	@	-	@	- @	-	@	- @	-	@	-	@	-
	8538	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- @	<u> </u>	@	- 1	@	-	@	- @	-	@	- @	-	@	-	@	-

Table B1. Database																											
Station	39750		39755		39758		39760		39782		39783	39785		80154		80155		81284		82612		81611		81757		77825	
8798 @	-	@	-	@	-	@	-	@	-	@	- @	0.001	U		@		@	-	@	-	@	-	@	-	@	-	@
2752 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	0.2	
8730 @	-	@	-	@	-	@	-	@	-	@	- @	0.001	Ū		@		@	-	@	-	@	-	@	-	@	-	@
8730 @	-	@	-	@	-	@	-	@	-	@	- @		Ū		@		@	-	@	-	@	-	@	-	@	-	@
2356 @	-	@	_	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2356 @	-	@	_	@	_	@	_	@	_	@	- @	_	@		@		@	_	@	_	@	_	@	_	@	_	@
2356 @	-	@	-	@	-	@	_	@	_	@	- @	-	@		@		@	_	@	-	@	-	@	-	@	-	@
2356 @	-	@	_	@	-	@	-	@	-	@	- @		@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	_	@	_	@	_	@	_	@	- @	_	@		@		@	_	@	-	@	_	@	_	@	_	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	_	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	_	@	- @	-	@		@		@	_	@	-	@	_	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	_	@	_	@	-	@	_	@	-	@
2469 @	-	@	-	@	_	@	-	@	_	@	- @	-	@		@		@	_	@	-	@	-	@	_	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	_	@	-	@	-	@	- @	-	@		@		@	_	@	-	@	-	@	-	@	_	@
2469 @	-	@	-	@	-	@	_	@	-	@	- @	-	@		@		@	_	@	-	@	-	@	_	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	_	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	_	@	- @	-	@		@		@	_	@	-	@	-	@	-	@	_	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	_	@	- @	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@
2469 @	1	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	+	@	-	@	_	@	-	@		@	- @	-	@		@	-	@		@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
2469 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@
210066 @	+-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
210066 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
		_				_		_		_						-	_		_	-	_			-			
210066 @ 210066 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
210066 @ 210066 @		@		@		@		@	-	@	9		@		@	-	@	-	@	-	@	-	@	-	@		@
	+	-	-	@	-	_	-	_		+-		-					-				_				@	-	
210066 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@
210066 @	-	@	-	@	-	@	-	@		@	- @	-	@		@		@	-	@		@	-	@		@	-	@
210067 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-		-	@	-	@	-	_	-		-	@	-	@
210067 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@		@	-	@	-	@	-	@
210068 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	•	@
210068 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	•	@	-	@	-	@	-	@
477504 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@
477505 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@
477505 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
477505 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
477505 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@

	Station	39750	39755		39758	39760	- (39782		39783	39	9785		80154	80155	5	81284		82612	2	81611		81757		77825	
	477505 @	- @	-	@	- @	- (0	@	- (@	- @) .	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477505 @		-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477505 @		-	@	- @		_		@	- @			@	- @		@	-	@	-	@	-	@	-	@	-	@
	477505 @		-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477505 @		-	@	- @		<u>.</u>		@	- @			@	- @	-	@	_	@	_	@	-	@	_	@	_	@
	477505 @		-	@	- @		<u>@</u>		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @		-	@	- @		<u>@</u>		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @		-	@	- @		œ @		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @		-	@	- @		<u>u</u> @		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @					œ @		_					_		@		@		_		@		@		@
			-	@	- @				@			-	@		-		-		-	@	-		-		-	
	477506 @	- @	-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477506 @	- @	-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477507 @	- @	-	@	- @		@	- (@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	477507 @	- @	-	@	- @	- (@	- (@	- @) .	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	7024070 @	- @	-	@	- @	- (@	- (@	- @) .	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	7024070 @	- @	-	@	- @	- (@	- (@	- @) .	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	7024070 @	- @	-	@	- @	- (@	- (@	- @) .	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	7024070																									
	7024070																									
	7024070																									
	7024070																									
	7024070																									
	7024070																									
	7024070																									
	7024070																									
	7024070						+		1		+				1	+		H		+		H				
	7024070						+		1		+				1	+		H		+		H				
	7024070			\vdash			-		-		+				 	1				1-						
	7024070						-				+					1				1-						<u> </u>
	7024070						-				+					1				1-						<u> </u>
@ - @ - @	7024070 - @7024070 @						+		-		+					+-		H		+		H				
@ - @ - @	- @7024070 @ - @7024070 @						+		-		+					+-		H		+		H				
@ - @ - @	- @7024070 @ 0	0 - 0	-	@	- @	- (0	@	- (@	- @) .	_	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
<u> </u>	7024070 @ 0		-	@	- @		œ @		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	7024070 @ 0 5600 @ 0																		-				-	_	-	@
	5602 @ 0		-	@	- @ - @		@ @		@	- @			@	- @ - @	-	@	-	@	-	@	-	@	-	@		@
									_												-			@	-	_
	360019089484301 @ @		-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	360019089484301 @ @		-	@	- @		@		@	- @			@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	360032089553201 @	1 K	-	@	- @		@		@	- @			@	- @	-	@	-	@		K	0.5		0.5		0.01	
	360320089522001 @		-	@	- @		@		@	- @		-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@
	360526089440601 K	1 K	-	@	- @	- (@	- (@	- @) .	-	@	- @	-	@	-	@	5	K	0.5	K	0.5	K	0.01	K

Station	39750	1	39755		39758		39760		39782		39783	39785		80154		80155		81284		82612		81611		81757	77825	П
360949089435001 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
360949089435001 @	<u> </u>	@	_	@		@	_	@		@	- @	_	@	_	@	_	@	_	@		@	_	@	- @	_	@
360949089435001 @	1	@	-	@		@	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@
361030089425001 @	-	@	-	@		@	-	@		@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
		_	-			_	-	@	-	_		-				-		-			@	-	_	_		@
361030089425001 @	-	@	-	@	-	@	-	_	-	@	•	-	@	-	@	-	@	-	@	-	_	-	@	•	-	
361130089394001 @	1	@		@		@		@	-	@	- @		@		@		@		@	-	@		@	•	-	@
361140089392903 @	-	@	-	@	-	@	-	@		@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361140089393001 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361140089393101 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361242089390401 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	•	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361415089450201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361418089444501 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361425089450701 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361455089443301 K	1	K	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	5	K	0.5	K	0.5 K	0.01	K
361455089443301 K	1	K	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	5	K	0.5	K	0.5 K	0.01	K
361455089443301 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
361920089432801 K	1	K		@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	5	K	0.5	K	0.5 K	0.01	K
361937089343201 @	-	@		@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362100089422001 @	-	@		@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362252089420201 K	1	K	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	5	K	0.5	K	0.5 K	0.01	K
362338089364401 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362341089365701 @	-	@	-	@		@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362355089364801 @	-	@	-	@		@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362356089364001 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362406089365401 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362408089364301 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362419089365201 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362440089334801 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362527089421101 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362527089421101 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362527089421101 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362528089414301 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362528089414301 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362530089414001 @	-	@	-	@	_	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362640089295301 @	-	@	-	@	_	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	-	@
362718089361101 K	1	K	-	@	_	@	-	@	_	@	- @	-	@	-	@	-	@	-	@	5	K	0.5	_	0.5 K	0.01	K
362955089293301 @	-	@	-	@	-	@	-	@	_	@	- @	_	@	_	@	-	@	_	@	-	@	-	@	- @	-	@
363039089240901 @	-	@	_	@		@	_	@	-	@	- @	_	@	_	@	-	@	-	@		@	_	@	- @	-	@
363107089363401 @	 -	@	-	@		@	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	_	@	- @	_	@
363107089363401 @	-	@	_	@	_	@	_	@		@	- @	-	@	-	@	-	@	_	@	-	@	-	@	- @	-	@
363107089363401 @	1 -	@	_	@	-	@	_	@		@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@
000101000000-01	1 -	9		(%)	_	w	-	~	-	w	. @	-	۳	-	S	1 - 1	۳	-	S	-	w	_	w	w.	1 -	S

Station	39750)	39755		39758		39760		39782		39783	39785		80154		80155		81284		82612		81611		81757	7782	5
363107089363401 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@		@	-	@	-	@	-	@	- @		@
363107089363401 @	-	@	_	@	_	@	_	@		@	- @	_	@	_	@	_	@	-	@		@	_	@	- @		@
363107089363401 @	1	@	_	@	-	@	-	@		@	- @	_	@		@	-	@	-	@		@	-	@	- @		@
363107089363401 @	-	@	-	@	-	@	-	@		@	- @	-	@		@	-	@	-	@	-	@	-	@	- @		@
	-	@	-		-	@	-	@	-	@		-	@		@	-	@	-	@	-	@	-	@	- @		@
363107089363401 @	-		-	@	-	_	-	@	-	@	•	-	_		@	-	@	-	@	-	@	-	@			@
363107089363401 @ 363107089363401 @	-	@	-	@	-	@	-	@	-	@	- @ - @	-	@		@	-	@	-	@	-	@	-	@	- @ - @		@
		@		_		@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @		@
363107089363401 @ 363126089291501 @	-	@	-	@	-	@	-	@	-	@	- @	-	@		@	-	@	-	@	-	@	-	@	- @	_	@
363130089370001 @	+	@	-	@	-	@	-	@		@	- @	-	@		@	-	@	-	@	-	@	-	@	- @		@
363157089291701 @	-	@	_	@	_	@	_	@		@	- @	_	@		@	_	@	_	@	-	@	_	@	- @		@
363200089350001 @	-	@	_	@	_	@	_	@		@	- @	-	@		@	_	@		@		@	_	@	- @	_	@
363219089310701 @	-	@	_	@	_	@	_	@	_	@	- @	-	@		@	-	@	_	@	_	@	_	@	- @	_	@
363447089173401 @		@	_	@	-	@	_	@		@	- @	_	@	_	@	-	@	-	@	-	@	-	@	- @		@
363500089320001 @	-	@	_	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@
363517089124501 @	-	@	_	@	_	@	_	@		@	- @	-	@		@	-	@	_	@	-	@	_	@	- @	_	@
363523089361001 @	-	@	_	@	_	@	_	@	-	@	- @	_	@		@	-	@		@	-	@	_	@	- @		@
363523089361001 @	-	@	_	@	_	@	_	@		@	- @	_	@	_	@	_	@	-	@		@	_	@	- @		@
363659089142801 @	-	@	_	@	_	@	_	@	_	@	- @	-	@	_	@	-	@	_	@	_	@	_	@	- @		@
363827089172701 @	-	@	_	@	_	@	_	@	-	@	- @	_	@		@	_	@	-	@		@	_	@	- @	_	@
363827089172701 @	-	@	_	@	_	@	_	@		@	- @	_	@	_	@	_	@	_	@		@	_	@	- @		@
363827089172701 @	-	@	_	@	_	@	_	@	_	@	- @	_	@	_	@	-	@	_	@	_	@	_	@	- @		@
363830089173501 @	-	@	_	@	_	@	_	@	-	@	- @	-	@		@	-	@	-	@		@	_	@	- @	_	@
363840089170001 @	<u> </u>	@	_	@	_	@	_	@		@	- @	_	@	_	@	_	@	_	@		@	_	@	- @		@
364055089103201 K	<u> </u>	l K	_	@	_	@	_	@	-	@	- @	-	@		@	-	@		@	- 5	K	0.5	_	0.5 K	0.0	
364222089243401 @	-	@	-	@	_	@	-	@	-	@	- @	-	@	_	@	-	@	_	@	-	@	- 0.0	@	- @		@
364224089273301 @	-	@	_	@	_	@	_	@		@	- @	_	@	_	@	-	@	_	@	-	@	_	@	- @		@
364240089313201 @	-	@	_	@	_	@	_	@		@	- @	_	@		@	_	@	-	@	-	@	_	@	- @		@
364247089273401 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@		@	- @		@
364331089123701 K		l K	_	@	_	@	_	@		@	- @	_	@	-	@	_	@	_	@		K	0.5	~	0.5 K	0.0	_
364424089151701 @	_	@	_	@	_	@	_	@	-	@	- @	-	@	_	@	-	@	-	@		@	- 0.5	@	- @	_	@
364453089282401 K	- -	I K	_	@	_	@	-	@		@	- @	_	@	-	@	-	@	-	@	- 5	K	0.5		0.5 K	0.0	
364453089282401 K		l K	_	@	_	@	_	@		@	- @	-	@	-	@	-	@	_	@		K	0.5		0.5 K	0.0	
364453089282401 @	-	@	_	@	-	@	_	@		@	- @	-	@	-	@	-	@	-	@	- 3	@	- 0.3	@	- @		@
W47371 @	-	@	_	@	-	@	_	@		@	- @	-	@	-	@	-	@	-	@	-	@	_	@	- @	_	@
W47371 @	-	@	_	@	_	@	_	@		@	- @	_	@	_	@	_	@	_	@	-	@	_	@	- @	_	@
W47371 @	-	@	_	@	_	@	_	@	-	@	- @	-	@	-	@	_	@	-	@	-	@	_	@	- @		@
W47372 @	-	@	_	@	_	@	_	@		@	- @	-	@	-	@	_	@	_	@	-	@	_	@	- @	_	@
W47373 @		@	_	@	-	@	-	@		@	- @	-	@	_	@	-	@	-	@	-	@	-	@	- @		@
W47373 @	-	@	_	@	-	@	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@
2363 @	-	@	_	@	_	@	-	@		@	- @	-	@	-	@	-	@	_	@	-	@	-	@	- @	_	@
2363 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@
2363 @	-	@	-	@	_	@	-	@		@	- @	-	@	-	@	-	@	-	@	-	@	_	@	- @		@
2363 @		@	-	@	_	@	_	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@
5601 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@
989 @	-	@	-	@	-	@	-	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @		@
989 @	-	@	_	@	_	@	_	@	-	@	- @	-	@	-	@	-	@	-	@	-	@	-	@	- @	_	@
989 @	-	@	_	@	-	@	-	@		@	- @	-	@	_	@	-	@	-	@	-	@	-	@	- @		@
303 W	1 ~	¥	1 -	<u> </u>	_	w.	-	₩	-	¥	9)		w	-	$\underline{\underline{w}}$	- 1	$\underline{\omega}$	-	$\underline{\mathbb{S}}$	-	w.	_	<u>w</u>	- (4		w

			S	tation)		39750		39755		39758		39760		39782	3	9783		39785		80154		80155		81284		82612		81611		81757	7	77825	5
						989 @		@	-	@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						989 @	-	@	-	@	-	@	-	@	- @		- (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						989 @		@	-	@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						990 @		@	-	@	-	@	-	@	- @			@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						990 @	-	@	-	@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						990 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						990 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						990 @	-	@	-	@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2353 @	-	@	-	@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						2353 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2353 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2353 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2353 @		@		@	-	@		@	- @			@	-	@	-	@	_	@	-	@		@	_	@	-	@	-	@
						2353 @	-	@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
			H			2357 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			-			2357 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			-			2358 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			-			2358 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			H			2359 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2359 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			-			2359 @		@		@	-	@		@	- @			@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2360 @				@	-			_						@		@		@		@			-	@	-	@	-	@
			-					@		@	-	@		@	- @ - @			@ @	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
			-			2360 @				_				_		_														_				@
			-			2361 @	-	@	-	@	-	@	-	@	- @		- (@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	w
			-			2361																										+	 	
			-			2361										+															 	+	⊢—	
			-			2365								_																		+	-	-
			_			2365																										\perp	├	
			-			2365										+															 	+	⊢—	
			_			2365																										\perp	├	
			_			2365																										\perp	├	
						2365										1																\perp		_
			-			2365				4				_		1						\vdash				<u> </u>				<u> </u>		+	—	_
						2365				_				_		-																+	 	-
						2365				_				_		-																+	 	-
			_			2365																										\perp	├	
						2365				_												ш									 	\sqcup	<u> </u>	1_
			<u> </u>			2365				_				_		-																+	 	-
						2365																									<u></u>		<u> </u>	
						2365																									<u></u>		<u> </u>	
	_		L			2468																									<u> </u>	\perp	<u> </u>	
@ -	@	-	@	-	@	2468 @																												
@ -	@	-	@	-	@	2468 @																									<u> </u>			
@ -	@	-	@	-	@	2468 @																												
@ -	@	-	@	-	@	2468 @ @		@		@	-	@		@	- @			@		@		@	-	@	-	@		@	-	@	-	@	-	@
						2468 @		@		@	-	@		@	- @			@		@	-	@	-	@	-	@		@	-	@	-	@	-	@
						2468 @	-	@		@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
						2468 @	-	@		@	-	@		@	- @			@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@

Station		39	9750		39755		39758		39760		39782		39783	3	39785		80154		80155		81284		82612		81611		81757	\neg	77825	
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2468 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@		@	-	@	-	@	-	@	-	@	-	(6)	-	@	-	@	-	@	-	(6)	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@	,	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	- 1	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@		@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
MO0001171	@		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	988 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	988 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	988 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2354 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2354 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2354 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	2354 @		-	@	1	@	-	@	-	@	-	@	-	@	-	@		@		@	-	@	1	@	-	@		@	-	@
	2354 @	<u> </u>	-	@		@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@	-	@	-	@
	2354 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@
	8538 @		-	@		@	-	@	-	@	-	@	-	@	-	@		@	-	@	-	@		@	-	@	-	@	-	@
	8538 @		-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@	-	@		@	-	@

Table B2	. Summary statistics for STORET retri	eval data.						
PARAM	MEDIUM	NUMBER	MEAN	STANDEV	MAXIMUM	MINIMUM	BEGDATE	ENDDATE
10	WATER TEMP CENT	141	16.84	9.5	37	2.6	560329	930305
59	FLOW RATE INST-GPM	4	33.3	7.86	43	25.2	760915	790821
	REDOX ORP MV	43	485.5	117.6	678	232	921216	930204
94	CNDUCTVY FIELD MICROMHO	43	432.3	174.1	924	4	921216	930204
95	CNDUCTVY AT 25C MICROMHO	84	1022	1245	6700	17	560329	900605
300	DO MG/L	53		3.73	13.5	0.2	690723	930204
301	DO SATUR PERCENT	11	79	14.3		51	690723	700710
	BOD 5 DAY MG/L	50		1290		0	690724	830601
400	PH SU	140	7.5	0.86	11.9	3.3	510514	930305
410	T ALK CACO3 MG/L	42	173.3	96.2		59		840802
500	RESIDUE TOTAL MG/L	10	451.4	177.1	740	218	690724	700625
530	RESIDUE TOT NFLT MG/L	74	6810	45998	381302	1	690724	830601
605	ORG N N MG/L	25	164.2	785.4	3931	0.06	830601	930204
	NH3+NH4- N DISS MG/L	9		0.159		0.01	690724	700625
610	NH3+NH4- N TOTAL MG/L	52	14.35	63.29		0.01	700416	930204
618	NO3-N DISS MG/L	17	0.144		0.68	0		710910
	NO3-N TOTAL MG/L	9		7.252	22	0.05	860617	860618
	TOT KJEL N MG/L	20	2.48	2.576		0.2	741022	760917
	NO2&NO3 N-TOTAL MG/L	41		1094.1	5896.4	0.01	760914	930204
665	PHOS-TOT MG/L P	57	30.785	193.3		0.02	690724	930204
	T ORG C C MG/L	28		8560		0.4		930204
	D ORG C C MG/L	10		0.44338		3.5		930204
	T. INORG C MG/L	16	68.9	45.8		25		930204
	IRON FE,TOT UG/L	99	6666.7	32097	298000	0		930304
	IRON FE,DISS UG/L	7	441.7	349.9	990	48		840802
	MALATHN WHL SMPL UG/L	4		0		0.05		860618
39570	DIAZINON WHL SMPL UG/L	11	0.05	0	0.05	0.05	860617	860618
39600	MPARATHN WHL SMPL UG/L	11	0.05	0	0.05	0.05	860617	860618
	ATRAZINE WHL SMPL UG/L	11	0.5	0	0.5	0.5		860618
	2,4-D WHL SMPL UG/L	11	0.01	0	0.01	0.01	860617	860618
39740	2,4,5-T WHL SMPL UG/L	11	0.011	0.003	0.02	0.01	860617	860618
39750	SEVIN WHL SMPL UG/L	11	1	0	1	1	860617	860618
39785	GBHC-TIS LINDANE WETMG/KG	12		0	0.001	0.001	860617	910909
81757	CYANAZIN WHL WAT UG/L	11	0.5	0	0.5	0.5	860617	860618

Table B3. S	Selected wa	iter quality o	data fr	om USGS	S NAWQA s	studies at Rive	s and More	house, MO.				
								DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVE
				INST.	SPECIFIC	DISSOLVED	pH, WH,	NITROGEN,	NITROGEN	NITROGEN,	NITROGEN	NITROGEN
				DISCH.	CONDUCT	OXYGEN	FIELD	AMMONIA	AMMONIA	NITRITE	NITRITE	AMM + ORG
				(cfs)	(uS/cm)	(mg/l)	(standard ι	(mg/l as N)	(mg/l as N)	(mg/l as N)	,	(mg/l as N)
Latitude		Date	Time	61	95	300	400		610	613		
365003			1030	155	712	9	7.9		-999	0.01	-999	
365003			1015	156	569	10.8	7.9			0.01	-999	
365003			815	171	521	5.2	8			0.02	-999	
365003		19960404	745	404	428	8.2	7.9			0.02	-999	
365003		19960409	730	219	522	9.6	8		-999	0.01	-999	
365003	894348	19951018	1040	-999	-999	-999	-999		-999	-999	-999	
365003	894348	19951018	1450	-999	-999	-999	-999		-999	-999	-999	
365003	894348	19951018	1445	-999	-999	-999	-999		-999	-999	-999	
365003			1500	-999	-999	-999	-999		-999	-999	-999	
365003			1000	4750	99	6.2	7.1	1.9	-999	0.04	-999	
365003			1515	2480	132	7.2	7.3		-999	0.06	-999	
365003	894348	19960521	945	348	575	6.8	7.7	0.02	-999	0.02	-999	
365003	894348	19960605	905	250	558	7	7.8		-999	0.02	-999	
365003	894348	19960619	1245	290	459	6.1	8		-999	0.02	-999	
365003		19960710	1315	96	505	8.4	8.2		-999	0.02	-999	
365003			645	73	585	7.1	8.2	0.07	-999	0.02	-999	
365003			950	49	592	7.8	7.9		-999	0.01	-999	
365003			950	43	571	6.9	8.1	0.015	-999	0.01	-999	0.2
365003	894348	19960904	1400	42	558	9.5	8.4	0.02	-999	0.01	-999	
365003	894348	19960917	1420	130	297	7.2	7.8	0.03	-999	0.01	-999	
365003	894348	19960830	800	-999	600	6	8		-999	-999	-999	
365003	894348	19960830	1200	-999	598	7.2	8.2	-999	-999	-999	-999	-999
365003		19960627	930	-999	616		7.9		-999	-999	-999	-999
365003			1100	-999	545		7.8		-999	-999	-999	-999
365003			1256	-999	540	8.9	7.7	-999	-999	-999	-999	
365003			1259	-999	497	9.1	7.7	-999	-999	-999	-999	
365003			1302	-999	490	8.8	7.8		-999	-999	-999	
365003			1304	-999	490	8.9	7.7	-999	-999	-999	-999	
365003	894348	19961002	1330	-999	532	8.9	7.8		-999	-999	-999	
365003	894348	19961002	1245	96	491	9.7	8.3	0.3	-999	0.01	-999	0.2

Table B3.	Selected wa	ater quality	data fro	om USG	S NAWQA s	studies at Rive	s and More	house, MO.				
								DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
				INST.	SPECIFIC	DISSOLVED	pH, WH,	NITROGEN,	NITROGEN	NITROGEN,	NITROGEN	NITROGEN,
				DISCH.	CONDUCT	OXYGEN	FIELD	AMMONIA	AMMONIA			AMM + ORG
				(cfs)	(uS/cm)	(mg/l)	(standard u	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)
Latitude	Longitude	Date	Time	61	95	300	400	608	610	613	615	
365003	894348		1400	71	566		8.3		-999	0.01	-999	0.2
365003	894348			84	568		8		-999	0.01	-999	0.2
365003	894348		1500	154	514		7.9		-999	0.01	-999	0.2
365003	894348		1445	440	370		7.7	0.05	-999	0.01	-999	
365003	894348			948	218	11.8	7.4		-999	0.01	-999	
365003	894348			265	557	-999	8	0.05	-999	0.03		
365003	894348		1400	1030	221	10.5	7.6		-999	0.01	-999	
365003	894348	19970205	1430	2210	133	10.3	7.2	0.13	-999	0.02	-999	
365003	894348	19970218	1500	350	501	10.8	8.1	0.015	-999	0.01	-999	0.2
365003	894348			4320	94	9.4	7.1	0.07	-999	0.02	-999	0.5
365003	894348			590	396		7.7	0.1	-999	0.02	-999	
365003	894348		1530	725	353	9.9	7.8	0.11	-999	0.02	-999	0.5
365003	894348		1530	388	509	9.2	7.9		-999	0.01	-999	0.2
365003	894348		1330	344	493	10.1	7.9	0.02	-999	0.02	-999	0.2
365003	894348		1530	3970	105	7.7	7.3	0.28	-999	0.04	-999	0.8
365003	894348	19970414	1410	532	374	9.5	7.7	0.06	-999	0.02	-999	0.3
365003	894348		830	290	542	8.9	7.7	0.015	-999	0.01	-999	0.2
365003	894348	19970429	1015	357	525	8.3	8.1	0.015	-999	0.011	-999	0.21
365003	894348	19970508	1105	365	468	8.3	7.9	0.015	-999	0.043	-999	0.2
365003	894348	19970512	1515	276	550	9.4	8.1	0.015	-999	0.01	-999	0.2
365003	894348	19970521	1400	362	447	9.1	8	0.015	-999	0.017	-999	0.33
365003	894348	19970527	1500	1330	203	6.8	7	0.469	-999	0.101	-999	1.1
365003	894348	19970605	1315	446	461	7.7	7.6	0.091	-999	0.097	-999	0.34
365003	894348	19970610	1310	336	502	8.2	7.6	0.047	-999	0.036	-999	0.2
365003	894348	19970616	1315	517	391	7	7.3	0.071	-999	0.099	-999	0.46
365003	894348	19970623	1315	1430	198	4.9	6.8	0.062	-999	0.052	-999	0.53
365003	894348	19970630		463	361	6.8	8	0.075	-999	0.03	-999	0.36
365003	894348	19970710	855	801	260	5.7	7.7	0.035	-999	0.031	-999	0.45
365003	894348	19970714	1422	247	445	7	7.9	0.043	-999	0.021	-999	
365003	894348	19970723	945	186	431	6.1	7.8	0.045	-999	0.017	-999	0.24

Table B3.	Selected wa	ter quality o	lata fr	om USG	S NAWQA s	studies at Rive	s and More	house, MO.				
								DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
				INST.	SPECIFIC	DISSOLVED	pH, WH,	NITROGEN,	NITROGEN	NITROGEN,	NITROGEN	NITROGEN,
				DISCH.	CONDUCT	OXYGEN	FIELD		AMMONIA		NITRITE	AMM + ORG
				(cfs)	(uS/cm)	(mg/l)		.(mg/l as N)	(mg/l as N)		(mg/l as N)	
Latitude	Longitude		Time	61	95		400		610			
365003		19970730	935	1590	87	5.8	7.1		-999	0.018		
365003		19970814	930	98	461	7.7	8.1		-999	0.012		
365003			1345	111	488		8.1		-999			
365003	894348		1310	118	456		8		-999	0.014		
365003	894348		915	83	550		7.9		-999	0.01		
365003	894348		1145	105	585		7.9		-999	-999		
365003	894348		1215	91	564		8.1		-999	0.01	-999	
365003	894348			101	564		8.1		-999	0.027	-999	0.1
365003	894348			144	548		7.6		-999	0.01	-999	
365003	894348		1430	179	555		8.1		-999	0.01		
365003	894348		730	100	577	6.8	7.8		-999	-999		
365003	894348		900	120	580	6	7.5		-999	-999		-999
360525	900447	19941004	1930					-999	0.02	-999		-999
360525	900447	19941108	1300					-999	0.08	-999		
360525	900447		1400					-999	0.14	-999		-999
360525	900447	19950124	1250					-999	0.09	-999		-999
360525	900447	19950214	930					-999	0.02	-999		-999
360525	900447	19950315	630					-999	0.05	-999		-999
360525	900447	19951419	800					-999	0.02	-999		-999
360525	900447	19950522	1700					-999	0.08	-999		-999
360525	900447	19950620	730					-999	0.01	-999	0.01	-999
360525	900447	19950712	1030					-999	0.06		0.03	-999
360525	900447		1130					-999	0.1	-999		-999
360525	900447		1000					-999	0.05	-999		-999
360525	900447		1500					-999	0.01	-999		-999
360525			1340					-999	0.1	-999		-999
360525								-999	-999	-999		-999
360525								-999	0.05			-999
360525			1610					-999	0.03			-999
360525	900447	19960130	1015					-999	0.24	-999	0.04	-999

Table B3. S	Selected wa	iter quality o	data fr	om USG	S NAWQA s	studies at Rive	s and More					
								DISSOLVED		DISSOLVED		DISSOLVED
				INST.		DISSOLVED		NITROGEN,				
				DISCH.	CONDUCT	OXYGEN	FIELD	AMMONIA		NITRITE	NITRITE	AMM + ORC
				(cfs)	(uS/cm)	(mg/l)	(standard u	(mg/l as N)		(mg/l as N)	` '	(mg/l as N)
Latitude			Time	61	95	300	400		610			
360525	900447	19960213	930					-999	0.04			
360525	900447		1445					-999	0.07			
360525	900447		1058					-999	0.04			
360525	900447		1235					-999	0.17			
360525	900447		1105					-999	0.16			
360525	900447		1030					-999	0.01			
360525	900447		1030					-999	0.03			
360525	900447		1100					-999	0.06			
360525	900447		1130					-999	0.03			
360525	900447							-999	0.04			
360525	900447		1400					-999	0.11			
360525	900447		1730					-999	0.13			
360525	900447							-999	0.06			
360525	900447		1600					-999	0.08			
360525	900447		1315					-999	0.07			
360525	900447		1530					-999	0.51	-999		
360525	900447		1215					-999	0.19			
360525	900447		1530					-999	0.01	-999		
360525	900447		1100					-999	0.02	-999	0.01	-999
360525	900447	19970904	1130					-999	0.03	-999	0.01	
360525	900447		1430					0.02	-999		-999	
360525	900447	19971104	1355					0.02	-999	0.03	-999	
360525	900447	19971217	1245					0.02	-999	0.01	-999	0.3
360525	900447	19980106	1030					0.02	-999	0.01	-999	
360525	900447	19980203	1345					0.11	-999	0.01	-999	0.3
360525	900447	19980303	1410					0.07	-999	0.01	-999	
360525	900447		1145					0.12	-999			
360525	900447	19980521	1530					0.08	-999			0.2
360525	900447	19980609	1515					0.54	-999	0.17	-999	1
360525	900447	19980707	1100					0.02	-999			0.2

Table B3.	Selected wa	ater quality	data fr	om USG	S NAWQA s	studies at Rive	s and More	house, MO.				
								DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
				INST.	SPECIFIC	DISSOLVED	pH, WH,	NITROGEN,	NITROGEN	NITROGEN,	NITROGEN	NITROGEN,
				DISCH.	CONDUCT	OXYGEN	FIELD	AMMONIA	AMMONIA	NITRITE	NITRITE	AMM + ORG
				(cfs)	(uS/cm)	(mg/l)	(standard u	(mg/l as N)				
Latitude	Longitude	Date	Time	61	95	300	400	608	610	613	615	623
360525	900447	19980810	1415					0.12	-999	0.03	-999	0.7
360525	900447	19980909	1145					0.05	-999	0.01	-999	0.2

TOTAL	TOTAL	DISSOLVED			DISS.				PHOSP	SUSP.	
		NITROGEN		DISSOLVED		CARBON	CARBON	SOLIDS		RESIDUE	DISS.
		NO2 + NO3		PHOSPHOR			ORGANIC	@ 180 C	TOTAL	@105 C	IRON
(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as	(mg/l as P)	(mg/l as	(mg/l)	(mg/l)	(mg/l)	(mg/l as		(ug/l as Fe)
625	630	631	665	666	671	681	689	70300	70507	530	1046
0.7	-999	0.06	0.09	0.04	0.03	2.4	0.7	-999	-999	-999	
0.2	-999	0.12	0.05	0.03	0.02	2.4	0.6	-999	-999	-999	
0.4	-999	0.3	0.11	0.06	0.03	2.3	0.9	-999	-999	-999	
0.5	-999	0.53	0.16	0.04	0.04	3.4	1.7	-999	-999	-999	
0.3	-999	0.2	0.1	0.03	0.03	1.7	0.6	-999	-999	-999	16
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
1.9	-999	1.5	0.61	0.11	0.12	11	10	-999	-999	-999	110
1.2	-999	2.1	0.11	0.1	0.11	8	6.5	-999	-999	-999	110
0.4	-999	0.13	0.17	0.04	0.04	2.2	0.9	-999	-999	-999	
0.4	-999	0.16	0.16	0.05	0.05	2.2	0.1	-999	-999	-999	
0.8	-999	0.37	0.22	0.05	0.05	3		-999	-999	-999	
0.4	-999	0.4	0.11	0.04	0.06	3.4	1.1	-999	-999	-999	
0.5	-999	0.17	0.12	0.07	0.09	3.2	0.2	-999	-999	-999	
0.3	-999	0.14	0.07	0.05	0.08	2.4	0.4	-999	-999	-999	
0.3	-999	0.08	0.12	0.07	0.07	2.1	0.5	-999	-999	-999	
0.2	-999	0.08	0.08	0.05	0.07	1.7	0.6	-999	-999	-999	
1.1	-999	0.45	0.31	0.06	0.07	5.1	2.8	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
0.2	-999	0.2	0.2	0.06	0.025	2.7	0.6	-999	-999	-999	3

TOTAL	TOTAL	DISSOLVED)		DISS.				PHOSP	SUSP.	
		NITROGEN	TOTAL	DISSOLVED		CARBON	CARBON	SOLIDS		RESIDUE	DISS.
	NO2 + NO2			PHOSPHOR			ORGANIC	@ 180 C			IRON
	(mg/l as N)	(mg/l as N)		(mg/l as P)	(mg/l as		(mg/l)	(mg/l)	(mg/l as		(ug/l as Fe)
625	630	631	665	666	671	681	689	70300	70507	530	1046
0.2	-999	0.05	0.07	0.04	0.025	2.7	0.6	-999	-999	-999	5
0.2	-999	0.05	0.05	0.04	0.025	2.7	0.6	-999	-999	-999	
0.3	-999	0.15	0.13	0.05	0.025	2.7	0.6	-999	-999	-999	
0.7	-999	0.23	0.25	0.08	0.025	2.7	0.6	-999	-999		
0.9	-999	0.34	0.33	0.1	0.025	2.7	0.6	-999	-999		
0.4	-999	0.16	0.09	0.02	0.025	2.7	0.6	-999	-999		
0.9	-999	0.31	0.35	0.07	0.025	2.7	0.6	-999	-999		
1.8	-999	0.55	0.47	0.11	0.025	2.7	0.6	-999	-999		
0.3	-999	0.14	0.07	0.01	0.025	2.7	0.6	-999	-999		
1.6	-999	0.22	0.47	0.08	0.025	2.7	0.6	-999	-999		
0.7	-999	0.33	0.19	0.02	0.025	2.7	0.6	-999	-999		
0.8	-999	0.32	0.2	0.04	0.025	2.7	0.6	-999	-999		
0.5	-999	0.21	0.12	0.04	0.025	2.7	0.6	-999	-999		
0.4	-999	0.3	0.12	0.04	0.025	2.7	0.6	-999	-999		
1.8	-999	0.73	0.64	0.16	0.025	2.7	0.6	-999	-999		
0.6	-999	0.41	0.23	0.06	0.025	2.7	0.6	-999	-999		
0.24	-999	0.052	0.068	0.02	0.025	2.7	0.6	-999	-999		
0.43	-999	0.282	0.09	0.016	0.025	-999	0.6	-999	-999		
0.49	-999	0.381	0.183	0.091	0.067	7.4	0.7	-999	-999		
0.27	-999	0.128	0.111	0.038	0.04	2.3	0.2	-999	-999		
0.74	-999	0.28	0.228	0.037	0.036	3.4	0.5	-999	-999		
2.5	-999	2.77	0.564	0.071	0.062	6.3	3.5	-999	-999		
0.53	-999	1.25	0.164	0.041	0.037	3.2	0.8	-999	-999		
0.54	-999	0.516	0.149	0.018	0.03	2.8	0.5	-999	-999		
0.95	-999	1.47	0.279	0.052	0.052	3.9	1.1	-999	-999		
1.1	-999	0.641	0.347	0.123	0.11	7.6	1.8	-999	-999		
1.4	-999	0.472	0.416	0.053	0.051	4.3	1.5	-999	-999		
0.94	-999	0.577	0.25	0.054	0.061	5.5	2.4	-999	-999		
0.49	-999	0.248	0.179	0.051	0.065	4.4	1.2	-999	-999		
0.67	-999	0.211	0.172	0.053	0.074	3.7	1.1	-999	-999	-999	3

TOTAL	TOTAL	DISSOLVED			DISS.				PHOSP	SUSP.	
NITROGEN	NITROGEN	NITROGEN	TOTAL	DISSOLVED	PHOSPI	CARBON	CARBON	SOLIDS	ORTHO	RESIDUE	DISS.
AMM + OR(NO2 + NO2	NO2 + NO3	PHOSPI	PHOSPHOR	ORTHO	ORGANIC	ORGANIC	@ 180 C	TOTAL	@105 C	IRON
		(mg/l as N)		(mg/l as P)	(mg/l as		(mg/l)	(mg/l)	(mg/l as		(ug/l as Fe)
625	630	631	665	666	671	681	689	70300	70507		
0.99	-999	0.388	0.176	0.027	0.024	6.8	5	-999	-999	-999	
0.4	-999	0.104	0.092	0.06	0.067	2.9	1.2	-999	-999	-999	
0.67	-999	0.098	0.232	0.09	0.089	4.3	0.8	-999	-999	-999	
0.32	-999	0.136	0.126	0.061	0.082	2.7	0.7	-999	-999	-999	
0.2	-999	-999	0.098	0.047	0.056	1.8	0.3	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
0.2	-999	0.05	0.046	0.034	0.038	1.5	0.2	-999	-999	-999	
0.12	-999	0.077	0.038	0.025	0.029	1.6	0.2	-999	-999	-999	
0.16	-999	0.05	0.026	0.021	0.014	1.8	0.4	-999	-999	-999	
0.31	-999	0.094	0.085	0.036	0.042	3.7	0.8	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	
0.29	0.02	-999	0.15	-999	-999			-999	0.1	-999	
1.3	0.24	-999	0.44	-999	-999			-999	0.36	150	
1.2	0.34	-999	0.44	-999	-999			-999	0.24	-999	
0.71	0.25	-999	0.31	-999	-999			-999	0.23	70	-999
0.2	0.09	-999	0.05	-999	-999			-999	0.06	-999	-999
0.47	0.23	-999	0.2	-999	-999			-999	0.12	-999	-999
0.37	0.05	-999	0.16	-999	-999			-999	0.1	-999	-999
0.88	0.96	-999	0.28	-999	-999			-999	0.12	-999	
0.48	0.06	-999	0.23	-999	-999			-999	0.09	64	
0.83	0.36	-999	0.15	-999	-999			-999	0.15	-999	-999
0.94	0.61	-999	0.35	-999	-999			-999	0.22	-999	-999
0.77	0.31	-999	0.16	-999	-999			-999	0.12	56	-999
0.38	0.02	-999	0.15	-999	-999			-999	0.12	-999	-999
0.97	0.34	-999	0.55	-999	-999			-999	0.41	-999	-999
-999	-999	-999	-999	-999	-999			-999	-999	-999	
0.35	0.27	-999	0.19	-999	-999			212	0.13	41	43
0.21	0.06	-999	0.06	-999	-999			-999	0.06	-999	-999
1	0.52	-999	0.32	-999	-999			190	0.23	140	26

											1
TOTAL	TOTAL	DISSOLVED			DISS.				PHOSP	SUSP.	
		NITROGEN		DISSOLVED		CARBON	CARBON			RESIDUE	DISS.
				PHOSPHOR	ORTHO	ORGANIC	ORGANIC	@ 180 C	TOTAL	@105 C	IRON
(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as	(mg/l as P)	(mg/l as	(mg/l)	(mg/l)	(mg/l)	(mg/l as	(mg/l)	(ug/l as Fe)
625	630	631	665	666	671	681	689	70300	70507	530	1046
0.28	0.12	-999	0.08	-999	-999			-999	0.07	-999	-999
0.65	0.4	-999	0.19	-999	-999			-999	0.12	-999	-999
0.4	0.28	-999	0.1	-999	-999			-999	0.07	-999	-999
1.1	0.99	-999	0.38	-999	-999			-999	0.18	-999	-999
2.1	1.6	-999	0.54	-999	-999			116	0.34	520	20
0.93	0.04	-999	0.24	-999	-999			-999	0.11	-999	-999
0.54	0.02	-999	0.18	-999	-999			214	0.18	48	6
0.25	0.02	-999	0.17	-999	-999			-999	0.13	-999	-999
0.38	0.02	-999	0.13	-999	-999			-999	0.09	-999	-999
0.78	0.29	-999	0.32	-999	-999			144	0.26	98	20
1.6	0.34	-999	0.51	-999	-999			-999	0.35	-999	-999
1.6	0.78	-999	0.48	-999	-999			100	0.21	250	100
0.38	0.21	-999	0.14	-999	-999			-999	0.09	-999	-999
0.35	0.26	-999	0.13	-999	-999			-999	0.07	-999	-999
0.51	0.44	-999	0.18	-999	-999			-999	0.11	-999	-999
3.4	2.4	-999	0.89	-999	-999			-999	0.33	-999	-999
0.95	0.02	-999	0.1	-999	-999			216	0.04	56	9
0.8	0.02	-999	0.2	-999	-999			-999	0.13	-999	-999
0.54	0.02	-999	0.16	-999	-999			202	0.11	60	10
0.62	0.02	-999	0.16	-999	-999			-999	0.13	-999	-999
-999	-999	0.05	-999	0.07	0.08			-999	-999	-999	-999
-999	-999	0.08	-999	0.04				251	-999	15	8
-999	-999	0.09	-999	0.08	0.05			-999	-999	-999	
-999	-999	0.17	-999	0.07	0.08			201	-999	106	46
-999	-999	0.16	-999	0.06	0.08			-999	-999	-999	-999
-999	-999	0.49	-999	0.09	0.08			-999	-999	-999	-999
-999	-999	0.42	-999	0.12	0.1			-999	-999	-999	-999
-999	-999	0.05	-999	0.07	0.08			-999	-999	-999	-999
-999	-999	1.9	-999	0.11	0.11			128	-999	102	80
-999	-999	0.05	-999	0.1	0.1			-999	-999	-999	

TOTAL	TOTAL	DISSOLVED)		DISS.				PHOSP	SUSP.	
NITROGEN	NITROGEN	NITROGEN	TOTAL	DISSOLVED	PHOSPI	CARBON	CARBON	SOLIDS	ORTHO	RESIDUE	DISS.
AMM + ORG	NO2 + NO2	NO2 + NO3	PHOSPI	PHOSPHOR	ORTHO	ORGANIC	ORGANIC	@ 180 C	TOTAL	@105 C	IRON
(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as	(mg/l as P)	(mg/l as	(mg/l)	(mg/l)	(mg/l)	(mg/l as	(mg/l)	(ug/l as Fe)
625	630	631	665	666	671	681	689	70300	70507	530	1046
-999	-999	0.28	-999	0.16	0.16			83	-999	50	240
-999	-999	0.05	-999	0.15	0.13						

Table B4 S	Selected ne	sticide data	from USGS	NAWOA s	tudies at Ri	ves and Mo	rehouse, M
Table B4. C	Joioolea pe	Stioide data	110111 0000		DISSOLVE		
							ATRAZINE
				(ug/l)	(ug/l)	(ug/l)	(ug/l)
Latitude	Longitude	Date	Time	#04024	#04035	#04037	#04040
365003	894348	19960227		.0070<	.0050<	.0180E	.0020<
365003	894348			.0070<	.0050<	.0180E	.0050<
365003	894348	19960312		.0070<	.0050<	.0180E	.0030<
365003	894348	19960404		.0070<	.0030<	.0180E	.0120<
365003	894348	19960409		.0070<	.0050<	.0180E	.0080<
365003	894348	19951018	1040	-999	-999	-999	-999
365003	894348	19951018	1450	-999	-999	-999	-999
365003	894348	19951018	1445	-999		-999	
365003	894348	19951018	1500	-999	-999	-999	
365003	894348	19960507		.0070<	.170E	.0140E	.570E
365003	894348	19960424		.0070<	.1702	.0140E	0.3
365003	894348			.0070<	.0230<	.0180E	0.055
365003	894348			.0070<	.0230<	.0180E	0.055
365003	894348	19960619		.0070<	.0210< .0270E	.0050E	0.066
365003	894348	19960710		.0070<	.0270E	.0050E	0.26
		19960710		.0070<	.0040E	.0030E	0.14
365003 365003	894348			.0070<			
	894348	19960813		.0070<	.0050<	.0180E	0.009
365003	894348	19960820			.0050<	.0180E	0.0246
365003	894348	19960904		.0070<	.0050<	.0180E	.0023<
365003	894348	19960917	1420		.0050<	.0180E	0.0379
365003	894348	19960830	800	-999	-999	-999	-999
365003	894348	19960830	1200	-999	-999	-999	-999
365003	894348	19960627	930	-999	-999	-999	-999
365003	894348	19951018	1100	-999	-999	-999	-999
365003	894348	19961002	1256	-999	-999	-999	-999
365003	894348	19961002	1259	-999	-999	-999	-999
365003	894348	19961002	1302	-999	-999	-999	-999
365003	894348	19961002	1304	-999	-999	-999	
365003	894348	19961002	1330	-999	-999	-999	
365003	894348			.0070<	.0050<	.0180E	.0022<
365003		19961016		.0070<	.0050<	.0180<	.0020<
365003	894348			.0070<	.0050<	.0180E	.0056<
365003	894348	19961119		.0070<	.0050<	.0180E	.0118<
365003	894348	19961204		.0070<	.0050<	.0180E	.0133<
365003	894348			.0070<	.0050<	.0180E	.0177<
365003	894348	19970114		.0070<	.0050<	.0180E	.0018<
365003	894348			.0070<	.0050<	.0180E	.0031<
365003	894348			.0070<	.0050<	.0180E	.0128<
365003	894348	19970218		.0070<	.0050<	.0180E	.0016<
365003	894348	19970304		.0070<	.0050<	.0180E	.0136<
365003	894348	19970313		.0070<	.0050<	.0180E	.0039<
365003	894348	19970317		.0070<	.0050<	.0180E	.0043<
365003	894348	19970324		.0070<	.0050<	.0180E	.0028<
365003	894348			.0070<	.0036<	.0180E	0.0059
365003	894348			.0070<	.0335E	.0067E	0.0632
365003	894348			.0070<		.0225E	0.0229
365003	894348	19970425	830	.0070<	.0068E	.0055E	0.0205

DISSOLVE DISSOLVE DISSOLVE DISTITYL	Table B4. S	Selected pe	sticide data	from USGS	NAWQA s	tudies at Ri	ves and Mo	rehouse, M
Latitude								
Latitude								
Latitude Longitude Date Time #04024 #04035 #04037 #04040 365003 894348 19970429 1015 .0070< .0153< .0180E .0.065 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.632 .0.633 .0.633 .0.63438 19970521 .0.6070< .0.050< .0.0180E .0.027 .0.6303 .0.632 .0.633 .0.634 .0.633								
365003 894348 19970429 1015 .0070<	Latitude	Longitude	Date	Time	, , ,	, , ,		
365003								
365003								
365003 894348 19970527 1500 .0070 .0329E .0122E 0.164 365003 894348 19970605 1500 .0070 .0329E .0122E 0.164 365003 894348 19970610 1315 .0070 .0082 .0180E 0.143 365003 894348 19970616 1315 .0070 .0146E .0078E 0.522 365003 894348 19970623 1315 .0070 .0081E .0041E 0.0321 365003 894348 19970710 .855 .0070 .0.061E .0041E 0.0321 365003 894348 19970714 .1422 .0070 .0.0694 .0296E 0.101 365003 894348 19970730 .935 .0070 .0.050E .0056E .0087 365003 894348 19970814 935 .0070 .0050 .0180E .0073 365003 894348 19970918 915 .0070 .0050 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
365003								
365003								
365003								
365003								
365003								
365003								
365003 894348 19970710 855 .0070< 0.0076 .0488E 0.0961 .365003 894348 19970714 .1422 .0070< 0.0694 .0296E 0.101 .365003 894348 19970730 .935 .0070< 0.0050 .0056E .0087< .365003 .894348 19970814 .930 .0070< .0050E .0056E .0087< .365003 .894348 19970814 .930 .0070< .0039E .0066E .0138< .365003 .894348 .9970826 .1310 .0070< .0050C .0180E .0073< .365003 .894348 .9970826 .1310 .0070< .0050C .0180E .0073< .365003 .894348 .9970918 .915 .0070< .0050C .0180E .0073< .365003 .894348 .9971022 .1215 .0070< .0050C .0180E .0015< .365003 .894348 .9971022 .1215 .0070< .0050C .0180E .0015< .365003 .894348 .9971103 .1315 .0070C .0050C .0180E .0010C .365003 .894348 .9971103 .1315 .0070C .0050C .0180E .0010C .365003 .894348 .9971105 .1315 .0070C .0050C .0180E .00110C .365003 .894348 .9980105 .1430 .0070C .0050C .0180E .00110C .365003 .894348 .9980105 .1430 .0070C .0050C .0180E .00116C .365003 .894348 .9980105 .1430 .0070C .0050C .0180E .00116C .365003 .894348 .9980709 .900 .999 .								
365003								
365003								
365003								
365003								
365003								
365003 894348 19970826 1310 .0070 .0050 .0180E .0073 365003 894348 19970918 915 .0070 .0050 .0180E .0041 365003 894348 19971022 1215 .0070 .0050 .0180E .0015 365003 894348 19971103 1315 .0070 .0050 .0180E .0010 365003 894348 19971216 1315 .0070 .0050 .0180E .0012 365003 894348 19980105 1430 .0070 .0050 .0180E .0016 365003 894348 19980709 900 .999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
365003 894348 19970918 915 .0070 .0050 .0180E .0041 365003 894348 19970904 1145 -999 -999 -999 -999 365003 894348 19971022 1215 .0070 .0050 .0180E .0010 365003 894348 19971216 1315 .0070 .0050 .0180E .0012 365003 894348 19980105 1430 .0070 .0050 .0180E .0016 365003 894348 19980903 730 -999								
365003 894348 19970904 1145 -999								
365003 894348 19971022 1215 .0070 .0050 .0180E .0015 365003 894348 19971103 1315 .0070 .0050 .0180E .0010 365003 894348 19980105 1430 .0070 .0050 .0180E .0012 365003 894348 19980903 730 -999 -999 -999 -999 -999 365003 894348 19980903 730 -999 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
365003 894348 19971103 1315 .0070 .0050 .0180E .0010 365003 894348 19971216 1315 .0070 .0050 .0180E .0012 365003 894348 19980105 1430 .0070 .0050 .0180E .0016 365003 894348 19980903 730 -999 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
365003 894348 19971216 1315 .0070 .0050 .0180E .0012 365003 894348 19980105 1430 .0070 .0050 .0180E .0016 365003 894348 19980709 900 -999 -999 -999 -999 365025 900447 19941004 1930 -999 -999 -999 -999 360525 900447 19941108 1300 -999 -999 -999 -999 360525 900447 19941219 1400 -999 -999 -999 -999 360525 900447 19950124 1250 -999 -999 -999 -999 360525 900447 19950214 930 -999 -999 -999 -999 360525 900447 19950315 630 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999								
365003 894348 19980105 1430 .0070 .0050 .0180E .0016 365003 894348 19980903 730 -999								
365003 894348 19980903 730 -999								
365003 894348 19980709 900 -999								
360525 900447 19941004 1930 -999								
360525 900447 19941108 1300 -999								
360525 900447 19941219 1400 -999								
360525 900447 19950124 1250 -999								
360525 900447 19950214 930 -999								
360525 900447 19950315 630 -999 -999 -999 -999 360525 900447 19951419 800 -999 -999 -999 -999 360525 900447 19950522 1700 -999 -999 -999 -999 360525 900447 19950620 730 -999 -999 -999 -999 360525 900447 19950712 1030 -999 -999 -999 -999 360525 900447 19950726 1130 -999 -999 -999 -999 360525 900447 19950808 1000 -999 -999 -999 -999 360525 900447 19950808 1500 -999 -999 -999 -999 360525 900447 19950905 1500 -999 -999 -999 -999 360525 900447 19951125 -999 -999 -999 -999 360525								
360525 900447 19951419 800 -999								
360525 900447 19950522 1700 -999								
360525 900447 19950620 730 -999								
360525 900447 19950712 1030 -999 -999 -999 -999 360525 900447 19950726 1130 -999 -999 -999 -999 360525 900447 19950808 1000 -999 -999 -999 -999 360525 900447 19950905 1500 -999 -999 -999 -999 360525 900447 19951030 1340 -999 -999 -999 -999 360525 900447 19951125 -999 -999 -999 -999 360525 900447 19951128 1030 <.007								
360525 900447 19950726 1130 -999								
360525 900447 19950808 1000 -999								
360525 900447 19950905 1500 -999 -999 -999 -999 -999 360525 900447 19951030 1340 -999 -999 -999 -999 -999 360525 900447 19951125 -999 -999 -999 -999 -999 360525 900447 19951212 1610 -999 -999 -999 -999 360525 900447 19960130 1015 -999 -999 -999 -999 360525 900447 19960213 930 -999 -999 -999 -999 360525 900447 19960313 1445 <.007								
360525 900447 19951030 1340 -999 -999 -999 -999 360525 900447 19951125 -999 -999 -018 E.004 360525 900447 19951128 1030 <.007								
360525 900447 19951125 -999 -999 <.018								
360525 900447 19951128 1030 <.007								
360525 900447 19951212 1610 -999 -999 -999 -999 360525 900447 19960130 1015 -999 -999 -999 -999 360525 900447 19960213 930 -999 -999 -999 -999 360525 900447 19960313 1445 <.007				1030				
360525 900447 19960130 1015 -999 -999 -999 -999 360525 900447 19960213 930 -999 -999 -999 -999 360525 900447 19960313 1445 <.007								
360525 900447 19960213 930 -999 -999 -999 -999 360525 900447 19960313 1445 <.007								
360525 900447 19960313 1445 <.007								
360525 900447 19960409 1058 <.007 <.005 <.018 E.009								

Table B4. S	Selected pe	sticide data	from USGS	NAWQA s	tudies at Ri	ves and Mo	rehouse, M
	·			DISSOLVE	DISSOLVE	DISSOLVE	DIETHYL
				PROPACH	SIMAZINE	PROMETO	ATRAZINE
				(ug/l)	(ug/l)	(ug/l)	(ug/l)
Latitude	Longitude	Date	Time	#04024	#04035	#04037	#04040
360525	900447	19960611	1105	<.007	0.021	E.005	E.240
360525	900447	19960718	1030	-999	-999	-999	-999
360525	900447	19960813	1030	<.007	<.005	<.018	E.012
360525	900447	19960910	1100	-999	-999	-999	-999
360525	900447	19961022	1130	-999	-999	-999	-999
360525	900447	19961120	1530	0.009	<.005	<.018	E.011
360525	900447	19961217	1400	-999	-999	-999	-999
360525	900447	19970122	1730	<.007	-999	-999	-999
360525	900447	19970219	1715	-999	-999	-999	-999
360525	900447	19970325	1600	<.007	<.005	<.018	<.002
360525	900447	19970416	1315	<.007	0.014	E.002	E.025
360525	900447	19970528	1530	<.007	0.079	<.018	E.316
360525	900447	19970611	1215	<.007	0.009	<.018	E.053
360525	900447	19970722	1530	-999	-999	-999	-999
360525	900447	19970806	1100	<.007	0.007	E.007	E.011
360525	900447	19970904	1130	-999	-999	-999	-999
360525	900447	19971021	1430	-999	-999	-999	
360525	900447	19971104	1355	<.007	<.005	<.018	E.001
360525	900447	19971217	1245	-999	-999	-999	-999
360525	900447	19980106	1030	-999	-999	-999	-999
360525	900447	19980203	1345	-999	-999	-999	-999
360525	900447	19980303	1410	<.007	<.005	<.018	E.001
360525	900447	19980421		<.007		<.018	E.168
360525	900447	19980521		<.007	<.005	<.018	E.031
360525	900447	19980609		<.007	0.032	<.018	E.277
360525	900447	19980707	1100				
360525	900447	19980810	1415	<.007	<.005	E.007	E.009
360525	900447	19980909	1145				

O.							
O. DISSOLVE	EII TEDEN	EII TEDEN	EII TEDED	EII TEDEN	EII TEDEN	EII TEDEN	EII TEDEN
CYANAZIN				METHIOC/			
	(ug/l)						
, • ,	#38442	#38478	#38482	#38501	#38538	#38711	#38746
	.0350<	.0180<	.0500<	.0260<	.0350E	.0100<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0350<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	0.035
2.50<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.160<	.0350<	.0180<	.0500<	.0260<	0.035		.0350<
.100<	.0350<	.0180<	.0500<	.0260<		.0800<	.0350<
.0210<	.0350<	.0180<	.0500<	.0260<		.0600<	.0350E
.0070<	.0350<	.0180<	.0500<	.0260<		.120<	.0350<
.0202<	.0350<	.0180<	.0500<	.0260<		.0800<	0.035
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0300<	.0350<
.370<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	0.035
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
	.0350<	.0180<	.0500<	.0260<		.0800<	.0350<
	.0350<	.0180<	.0500<	.0260<		.0300<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<		.0500<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0200<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<		.0900<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0040<	-999	-999	-999	-999	-999	-999	-999
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0100<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
.0092<	.0350<	.0180<	.0500<	.0260<	.0350E	.0100<	.0350<
.439<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
	.0350<	.0180<	.0500<	.0260<	.0350E	.0100<	.0350<

b.							
_	FILTERED	EII TEDED	EII TEDEN	EII TEDED	EII TEDED	EII TEDED	EII TEDED
	DICAMBA					BENTAZO	
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#04041	#38442	#38478	#38482	#38501	#38538	#38711	#38746
.197<	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
.170<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0569<	.0350<	.0180<	.0500<	.0260<		.0900<	.0350<
1.24<	.0350<	.0180<	.0500<	.0260<	.0350E	.0100<	.0350E
.0917<	.0350<	.0180<	.0500<	.0260<		.0700<	0.035
.151<	.0350<	.0180<	.0500<	.0260<		.0600<	0.035
.0746<	.0350<	.0180<	.0500<	.0260<	.0350E	.0300<	.0350<
.119<	.0350<	.0180<	.0500<	.0260<	.0350E	1.31<	0.035
.112<	.0350<	.0180<	.0500<	.0260<		.670<	0.035
.0215<	.0350<	.0180<	.0500<	.0260<		.610<	.0350<
.0242<	.0350<	.0180<	.0500<	.0260<		.630<	0.035
.186<	.0350<	.0180<	.0500<	.0260<		.490<	.0350<
.0166<	.0350<	.0180<	.0500<	.0260<		.280<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<		.320<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<		.490<	0.035
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0037<	.0350<	.0180<	.0500<	.0260<		.140<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<		.0400<	.0350<
-999	-999	-999	-999	-999	-999	-999	-999
.0040<	.0350<	.0180<	.0500<	.0260<	.0350<	.0140<	.0350<
.0040<	.0350<	.0180<	.0500<	.0260<	.0350E	.0200<	.0350<
.0040<	.0350<	.0180<	.170<	.0260<	.0350<	.0140<	.240<
.0040<	.0350<	.0180<	.170<	.0260<	.0350E	.0200<	.240<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999				-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.021	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.004	-999	-999	-999	-999	-999	-999	-999
0.009	-999	-999	-999	-999	-999	-999	-999
0.72	-999	-999	-999	-999	-999	-999	-999
U., Z	000	555	000	000	555	555	555

O.							
DISSOLVE	FILTERED	FILTERED	FILTERED	FILTERED	FILTERED	FILTERED	FILTERED
CYANAZIN	DICAMBA	LINURON	MCPA	METHIOC/	PROPOXU	BENTAZO	2,4-DB
(ug/l)							
#04041		#38478	#38482		#38538	#38711	#38746
0.32	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.202	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.032	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.004	-999	-999	-999	-999	-999	-999	-999
0.199	-999	-999	-999	-999	-999	-999	-999
0.208	-999	-999	-999	-999	-999	-999	-999
0.059	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.569	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.004	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.004	-999	-999	-999	-999	-999	-999	-999
0.162	-999	-999	-999	-999	-999	-999	-999
<.004	-999	-999	-999	-999	-999	-999	-999
0.077	-999	-999	-999	-999	-999	-999	-999
	-999	-999	-999	-999	-999	-999	-999
0.057	-999	-999	-999	-999	-999	-999	-999

FILTERED	FILTERED	DISSOLVE	DISSOLVE	DISSOLVE	Wat.	DISSOLVE	DISSOLVE
FLUOMET		CHLORPY					PARATHIC
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	#38866		#39341	#39381	#39415	#39532	#39542
	.0180<	0.004		.001E	.003<	.005<	.004<
	.0180<	0.004		0.001		.005<	.004<
	.0180<	0.004		0.001		.005<	.004<
	.0180<	0.004			.160<	.005<	.004<
	.0180<	0.004		0.001		.005<	.004<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999		-999	
-999	-999	-999	-999	-999	-999	-999	
	.0180<		.004<	.001E	8.50<	.005<	.004<
	.0180<	0.004		.001E	6.40<	.005<	.004<
	.0180<	0.004			.330<	.005<	.004<
	.0180<	0.004		0.001		.005<	.004<
.0350<	0.018		.004<		.730<	.005<	.004<
	.0180<	0.004			.100<	.005<	0.004
	.0180<	0.004			.100<	.005<	.004<
	.0180<	0.004			.024<	.005<	.004<
	.0180<	0.004			.299<	.005<	.004<
	.0180<	0.004			.019<	.005<	.004<
	.0180<	0.004	.004<	0.001		.005<	.004<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999		-999	
-999	-999	-999	-999	-999		-999	
	.0180<	0.004		0.001		.005<	.004<
	.0180<		.004<	.001E		.005<	.004<
	.0180<	0.004		0.001		.005<	.004<
	.0180<	0.004			.039<	.005<	.004<
	.0180<	0.004			.055<	.005<	.004<
	.0180<	0.004			.057<	.005<	.004<
	-999999	0.004			.016<	.005<	.004<
	.0180<	0.004			.029<	.005<	.004<
	.0180<	0.004			.042<	.005<	.004<
	.0180<	0.004			.011<	.005<	.004<
.0350<	.0180<	0.004			.032<	.005<	.004<
.0350<	.0180<	0.004			.014<	.005<	.004<
.0350<	.0180<	0.004			.017<	.005<	.004E
	.0180<	0.004			.007<	.005<	.004<
	.0180<	0.004			.104<	.005<	.004<
.0350<	.0180<	0.004			4.09<	.005<	0.004
	.0180<	0.004			.623<	.005<	.004E
	.0180<		.004<		.285<	.005<	.004

FILTERED	FILTERED	DISSOLVE	DISSOLVE	DISSOLVE	Wat.	DISSOLVE	DISSOLVE
	OXAMYL	CHLORPY					PARATHIC
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#38811	#38866	•	#39341	#39381	#39415	#39532	#39542
.0350<	.0180<	0.004			.911<	.005<	.004<
.0350<	.0180<	0.004		0.001	4.27<	.005<	.004<
.0350<	.0180<	0.004			1.08<	.005<	.004<
.120<	.0180<	0.004			4.52<	.005<	.004<
1.05<	.0180E	0.0039	.004<		9.38<	.005<	0.004
.0500<	.0180<	0.004	.004<		1.39<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.831<	.005<	.004<
.0700<	.0180<	0.004	.004<	0.001	1.26<	.005<	.004<
.160<	.0180<	0.004	.004<	0.001	1.11<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.416<	.005<	.004<
.100<	.0180<	0.004	.004<	0.001	.707<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	0.222	.016<	.004<
.0350<	.0180<	0.004	.004<	0.001	.242<	.005<	.004<
.0350<	0.018	0.0045	.004<	0.001	.070<	.005<	.004<
.0700<	.0180<	0.004	.004<	0.001	.070<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.066<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.029<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.007<	.005<	.004<
-999	-999	-999	-999	-999	-999	-999	-999
.0350<	.0180<	0.004	.004<	0.001	.008<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.007<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.007<	.005<	.004<
.0350<	.0180<	0.004	.004<	0.001	.009<	.005<	.004<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001		<.005	<.004
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001		<.005	<.004
-999	-999		<.004	<.001		<.005	<.004
-999	-999	-999	<.004	<.001	-999	<.005	<.004

FII TERED	FII TERED	DISSOLVE	DISSOI VE	DISSOI VE	Wat	DISSOLVE	DISSOLVE
FLUOMET		CHLORPY					PARATHIC
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	#38866	` ` ,	#39341	#39381	#39415	#39532	#39542
-999	-999	-999	<.004	<.001		<.005	<.004
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	<.004	0.005	-999	<.005	<.004
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001	0.178	<.005	<.004
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001	0.023	<.005	<.004
-999	-999	-999	<.004	<.001	1.68	<.005	<.004
-999	-999	-999	<.004	<.001	9.81	<.005	<.004
-999	-999	-999	<.004	<.001	0.873	<.005	<.004
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001	0.223	<.005	<.004
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	<.004	<.001	0.073	<.005	<.004
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999		<.004	<.001		<.005	<.004
-999	-999		<.004	<.001		<.005	<.004
-999	-999		<.004	<.001	0.277	<.005	<.004
-999	-999	-999	<.004	<.001	5.3	0.008	<.004
-999	-999	-999	-999		-999		
-999	-999	-999	<.004	<.001	0.47	<.005	<.004

DISSOLVE	DISSOLVE	DISSOLVE	DISSOI VE	DISSOI VE	DISSOLVE	FII TERED	FILTERED
	ATRAZINE		2,4,5-T	SILVEX			PROPHAM
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#39572	#39632	#39732	#39742	#39762	#46342	#49235	#49236
0.002		.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002		.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002	.047<	.035<	.0350<	.0210< .0210E	.002<	.0500<	0.035
0.002	.210<	.050<	.0350<	0.021		.0320<	0.035
0.002	.110<	.035<	.0350<	.0210<	.002<	.0500<	0.035
			-999	-999	-999	-999	
-999	-999 -999	-999 -999	-999	-999	-999	-999 -999	-999 -999
-999							
-999	-999	-999	-999	-999		-999	-999
-999	-999	-999	-999	-999		-999	-999
.002E	20	.230<	.0350<		2.40<	.0500<	0.035
.002E	20	.550<	.0350<		3.20<	.0500<	0.035
0.002		.035<	.0350<		.069<	.0500<	0.035
0.002		.035<	.0350<		.390<	.0500<	0.035
0.002		.035<	.0350<		.082<	.0500<	0.035
0.018	1.4	.760<	.0350<		.057<	.0500<	0.035
0.002		.035<	.0350<		.022<	.0500<	0.035
0.002		.035<	.0350<		.060<	.0500<	0.035
0.002	.183<	.035<	.0350<		.033<	.0500<	0.035
0.002	.012<	.035<	.0350<		.006<	.0500<	0.035
0.002	.226<	.035<	.0350<	0.021	.017<	.0500<	0.035
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.002	.058<	.035<	.0350<	0.021	.005<	.0500<	0.035
0.002	.006<	.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002	.029<	.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002	.050<	.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002	.092<	.035<	.0350<	0.021	.007<	.0500<	0.035
0.002	.108<	.035<	.0350<	0.021		.0500<	0.035
0.002	0.032	-999		-999999<	0.002	-999	-999
0.002		.035<	.0350<		.006<	.0500<	0.035
0.002		.035<	.0350<		.009<	.0500<	0.035
0.002		.035<	.0350<	.0210E	.003<	.0500<	0.035
0.002		.035<	.0350<		.009<	.0500<	0.035
0.002		.035<	.0350<	.0210E	.003<	.0500<	0.035
0.003		.035<	.0350<	.0210E	.003<	.0500<	0.035
0.002		.035<	.0350<	.0210E	.002<	.0500<	0.035
0.002		.035<	.0350<		.058<	.0500<	0.035
0.002	18.6		.0350<		2.54<	.0500<	0.035
0.004		.110<	.0350<		.615<	.0500<	0.035
0.004		.035<	.0350<		.063<	.0500<	0.035
0.002	1.11	.000	.0000	0.021	.000	.0000	0.033

DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	FII TERED	FILTERED
	ATRAZINE		2,4,5-T	SILVEX			PROPHAM
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	#39632	#39732	#39742	#39762	#46342	#49235	#49236
0.002	6.5	.220<	.0350<		.603<	.0500<	0.035
0.002		.170<	.0350<		1.27<	.0500<	0.035
0.002		.110<	.0350<		.277<	.0500<	0.035
0.002		.590<	.0350<		1.65<	.0500<	0.035
.010E	22.1	.240<	.0350<		5.46<	.0500<	0.035
0.002		.035<	.0350<		.479<	.0500<	0.035
0.002		.035<	.0350<		.179<	.0500<	0.035
0.002		.190<	.0350<		.256<	.0500<	0.035
0.002		.280<	.0350<		.212<	.0500<	0.035
0.002		.035<	.0350<		.176<	.0500<	0.035
0.002	2.13		.0350<		.920<	.0500<	0.035
0.002	0.813		.0350<		.490<	.0500<	0.035
0.002		.035<					
			.0350<		.043<	.0500<	0.035
0.002		5.83<	.0350<	.0210<	.002<	.0500<	0.035
		.035<	.0350<		.009<	.0500<	0.035
0.002		.035<	.0350<	.0210E	.004<	.0500<	0.035
0.002		.035<	.0350<	.0210E	.004<	.0500<	0.035
	.054<	.035<	.0350<	.0210E	.003<	.0500<	0.035
-999	-999	-999	-999	-999		-999	-999
		.035<	.0350<	.0210<	.002<	.0500<	0.035
0.002		.035<	.0350<	.0210<	.002<	.0500<	0.035
		.150<	.0350<	.0210<	.002<	.250<	0.035
	.014<	.150<	.0350<	.0210<	.002<	.250<	0.035
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999				
-999	-999	-999	-999				-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.031	-999	-999	-999	0.006	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.083	-999	-999	-999	<.01	-999	-999
<.002	0.32	-999	-999	-999	0.006	-999	-999
<.002	9.3	-999	-999	-999	0.36	-999	-999

DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	DISSOLVE	FILTERED	FILTERED
DIAZINON	ATRAZINE	2,4-D	2,4,5-T	SILVEX	ALACHLO	TRICLOPY	PROPHAM
(ug/l)	(ug/l)						
#39572		#39732	#39742	#39762	#46342	#49235	#49236
<.002	5.1	-999	-999	-999	1.1	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.18	-999	-999	-999	0.009	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.1	-999	-999	-999	0.026	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.026	-999	-999	-999	E.002	-999	-999
<.002	3.78	-999	-999	-999	0.201	-999	-999
0.007	12	-999	-999	-999	2.98	-999	-999
<.002	1.42	-999	-999	-999	0.184	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.137	-999	-999	-999	0.022	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.019	-999	-999	-999	E.004	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.041	-999	-999	-999	0.006	-999	-999
<.002	7.63	-999	-999	-999	0.541	-999	-999
<.002	0.72	-999	-999	-999	0.016	-999	-999
<.002	6.38	-999	-999	-999	0.855	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	0.22	-999	-999	-999	0.028	-999	-999

FII TERED	FII TERED		FII TERED	FII TERED		
		REN				
						(ug/l)
			, ,		, ,	#49314
						.0210<
						.0210<
						.0210<
						.0210<
						.0210<
						-999
						-999
						.0210<
						.0210<
						.0210<
						.0210<
						0.021
						0.021
						.0210<
						.0210<
						.0210<
						.0210<
.0350<						.0210E
-999	-999	-999	-999		-999	-999
-999	-999	-999	-999		-999	-999
					-999	-999
-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
-999	-999	-999	-999	-999	-999	-999
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210E
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0350<	.0110<	.0140<		.0160<	.0160<	.0210<
						.0210<
						.0210<
						.0210<
						.0210<
.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
	CHLOROT (ug/l) #49306 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0350 < 0	(ug/l) (ug/l) #49306 #49307 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 0350 .0110 <td>CHLOROT CHLORAMBEN (ug/l) (ug/l) (ug/l) (449306 #49307 #49308 0350< .0110< .0140< -999</td> <td>CHLOROT CHLORAMBEN (ug/l) (ug/l) (ug/l) (ug/l) (449306 #49307 #49308 #49309 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280<</td> <td> CHLOROT CHLORAMBEN</td> <td> CHLOROT CHLORAMBEN</td>	CHLOROT CHLORAMBEN (ug/l) (ug/l) (ug/l) (449306 #49307 #49308 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< 0350< .0110< .0140< -999	CHLOROT CHLORAMBEN (ug/l) (ug/l) (ug/l) (ug/l) (449306 #49307 #49308 #49309 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280< 0350< .0110< .0140< .0280<	CHLOROT CHLORAMBEN	CHLOROT CHLORAMBEN

FII TERED	FILTERED	FII TERED		FII TERED	FII TERED	AL DICARR	ALDICARB
	CHLOROT					SULFONE	
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#49305	#49306	#49307	#49308	#49309	#49312	#49313	#49314
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	0.014		.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	0.021
						.0160<	.0210<
.0500< -999	.0350<	.0110< -999	.0140<	.0280<	.0160< -999		-999
.0500<	-999 .0350<	.0110<	-999	-999 .0280<		.0160<	
			.0140<		.0160<		.0210<
.0500<	.0350<	.0110<	.0140<	.0280<	.0160<	.0160<	.0210<
.230<	.480<	.420<	.0140<	.120<	.550<	.100<	.0210<
.230<	.480<	.420<	.0140<	.120<	.550<	.100<	.0210<
-999	-999	-999	-999	-999	-999		-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999		-999		-999
-999	-999	-999	-999				-999
-999	-999	-999	-999		-999		-999
-999		-999	-999				
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
	-999	-999	-999	-999	-999	-999	-999
-999							
-999	-999	-999	-999	-999	-999	-999	-999
-999 -999	-999 -999	-999 -999	-999	-999	-999	-999	-999
-999 -999 -999	-999 -999 -999	-999 -999 -999	-999 -999	-999 -999	-999 -999	-999 -999	-999 -999
-999 -999 -999 -999	-999 -999 -999						
-999 -999 -999	-999 -999 -999	-999 -999 -999	-999 -999	-999 -999	-999 -999	-999 -999	-999 -999

EII TEDED	FILTERED	EII TEDED		EII TEDED	FILTERED	AL DICADE	
		CHLORAM	IDENI		ALDICARB		
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#49305	#49306	#49307	#49308	#49309	#49312	#49313	#49314
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
L		l .	1	l .			·

FILTERED	CIS-NONA	T-NONACH	OXYCHLO	ALDRIN	CIS-CHLO	T-CHLORI	CHLORON
ACIFLUOR		BM <	BM	BM <2MM		BM <	BM <2M
(ug/l)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49315	#49316	#49317	#49318	#49319	#49320	#49321	#49322
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999
-999999<	1.00<	1.00<	1.00<	1.00<	1.00<	1.00<	5.00<
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.07	-999	-999	-999	-999	-999	-999	-999
0.04	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.03	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.06	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.08	-999	-999	-999	-999	-999	-999	-999
0.1	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.03	-999	-999	-999	-999	-999	-999	-999
0.05	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999

FILTERED	CIS-NONA	T-NONACH	OXYCHLO	ALDRIN	CIS-CHLO	T-CHLORE	CHLORON
ACIFLUOR		BM <	BM	BM <2MM	BM	BM <	BM <2M
(ug/l)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49315	#49316	#49317	#49318	#49319	#49320	#49321	#49322
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.05	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.64	-999	-999	-999	-999	-999	-999	-999
0.34	-999	-999	-999	-999	-999	-999	-999
0.46	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.25	-999	-999	-999	-999	-999	-999	-999
0.06	-999	-999	-999	-999	-999	-999	-999
0.12	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.05	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
0.035	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

FILTERED	CIS-NONA	T-NONACH	OXYCHLO	ALDRIN	CIS-CHLO	T-CHLORE	CHLORON
ACIFLUOR	BM	BM <	BM	BM <2MM	BM	BM <	BM <2M
(ug/l)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49315	#49316	#49317	#49318	#49319	#49320	#49321	#49322
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
			`				

DCPA	O,P'-DDD	P,P'-DDD	O,P'-DDE	P,P'-DDE	O,P'-DDT	P,P'-DDT	DIELDRIN
	BM <2MM		•	BM <2MM		,	BM <2MM
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49324	#49325	#49326	#49327	#49328	#49329	#49330	#49331
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
5.00<	1.00<	1.00<	1.00<	1.00<	2.00<	2.00<	1.00<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999			-999	
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

DCPA	O,P'-DDD	P P'-DDD	O,P'-DDE	P,P'-DDE	O,P'-DDT	P,P'-DDT	DIELDRIN
	BM <2MM	,	,	BM <2MM			BM <2MM
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49324	#49325	#49326	#49327	#49328	#49329	#49330	#49331
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

BM <2MM B (ug/kg) (u	BM <2MM ug/kg)	BM <2MM (ug/kg)	O,P'-DDE BM <2MM (ug/kg)		O,P'-DDT BM <2MM	P,P'-DDT	DIELDRIN
(ug/kg) (u	ug/kg) 49325	(ug/kg)		BM <2MM	DM 20MM		
	49325	` 0 0,	(ua/ka)		DIVI <ziviivi< td=""><td>BM <2MM</td><td>BM <2MM</td></ziviivi<>	BM <2MM	BM <2MM
#49324 #4		#49326	(3,3)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	-999	# 100 <u>2</u> 0	#49327	#49328	#49329	#49330	#49331
-999		-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

ENDOSUL	ENDRIN	ALPHA-BH	BETA-BHC	HEPTA-CH	HEPTACH	BENZENE	ISODRIN
BM	BM <2MM	BM <2M	BM <2MM		EPOXI	HEXACHL	
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49332	#49335	#49338	#49339	#49341	#49342	#49343	#49344
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
1.00<	2.00<	1.00<	1.00<	1.00<	1.00<	1.00<	1.00<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

ENDOSUL	ENDRIN	ALPHA-BH	BETA-BHC	HEPTA-CH	HEPTACH	BENZENE	ISODRIN
ВМ	BM <2MM	BM <2M	BM <2MM	BM <	EPOXI	HEXACHL	BM <2MM
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49332	#49335	#49338	#49339	#49341	#49342	#49343	#49344
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

ENDOSUL	ENIDDIN		BETA-BHC	LIEDTA CL	HEDTACH	DENIZENIE	ICODDIN
BM		BM <2M	BM <2MM		EPOXI	HEXACHL	
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49332		#49338	#49339	#49341	#49342	#49343	#49344
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
555	555	333	555	555	333	333	333
<u></u>							

							ALDRIN
LINDANE	METHOXY	METHOXY	MIREX	CIS-PERM	ETHRIN	TOXAPHE	BIOTA
BM <2MM		O,P	BM <2MM	<	TRANS-PE		WH
	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
` 0 0,	#49346	#49347	#49348	#49349	#49350	#49351	#49353
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999		-999999<	5.00<
-999	-999	-999	-999	-999	-999	-999	-999
	5.00<	5.00<	1.00<	5.00<	5.00<	200	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

							ALDRIN
LINDANE	METHOXY	METHOXY	MIREX	CIS-PERM	ETHRIN	TOXAPHE	
	P,P	O,P	BM <2MM	<	TRANS-PE		WH
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49345		#49347	#49348	, , ,	#49350	#49351	#49353
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

							ALDRIN
LINDANE	METHOXY	METHOXY	MIREX	CIS-PERM	ETHRIN	TOXAPHE	BIOTA
BM <2MM	P,P	O,P	BM <2MM	<	TRANS-PE	BM <2M	WH
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49345	#49346	#49347	#49348	#49349	#49350	#49351	#49353
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

PCB							
	TOXAPHE	NF	OXYCHLO	RDANE	CIS-NONA	MIREX	PPMETHO
	WH ORG	PENTCHLO		TRANS-NO		WH ORG	W
	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	#49355	#49356	#49357	#49358	#49359	#49360	#49361
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
	200<	5.00<	5		5.50<	5.00<	5.00<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

PCB							
BIOTA	TOXAPHE	NE	OXYCHLO	RDANE	CIS-NONA	MIREX	PPMETHO
WH ORG	WH ORG	PENTCHLO	WH	TRANS-NO	WH	WH ORG	W
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	#49355	#49356	#49357	#49358	#49359	#49360	#49361
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

PCB							
BIOTA	TOXAPHE	NE	OXYCHLO	RDANE	CIS-NONA	MIREX	PPMETHO
WH ORG	WH ORG	PENTCHLO	WH	TRANS-NO	WH	WH ORG	W
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49354	#49355	#49356	#49357	#49358	#49359	#49360	#49361
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

OPMETHO	LINDANE	DELTA-BH	BETA-BHC	ALPHA-BH	IC		HEPTACH
W	WH ORG	WH ORG	WH ORG	WH ORG		HEPTACH	
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49362	#49363	#49364	#49365	#49366	#49367	#49368	#49369
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
5.00<	5.00<	5.30<	5.00<	5.00<	5.00<	5.00<	5.00<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-555	-999	-999	-999	-555	-999	-999	-999

OPMETHC				ALPHA-BH			HEPTACH
W	WH ORG	WH ORG	WH ORG	WH ORG	HEXACHL	HEPTACH	WH ORG
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49362	#49363	#49364	#49365	#49366	#49367	#49368	#49369
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

	Г	Г			П	Г	
ODMETHO		DELTA DI	DETA DUG	AL DUIA DU	10		LIEDTAGU
OPMETHC			BETA-BHC				HEPTACH
W	WH ORG	WH ORG	WH ORG			HEPTACH	
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49362	#49363	#49364	#49365	#49366	#49367	#49368	#49369
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
							200
<u> </u>							

ENDRIN	DIELDRIN	P.P'-DDE	O,P'-DDE	O,P'-DDD	P.P'-DDD	P,P'-DDT	O,P'-DDT
WH ORG		WH ORG	WH ORG		WH ORG	WH ORG	WH ORG
(ug/kg)							
#49370		#49372	#49373		#49375	#49376	#49377
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
5	25	43.0<	5.00<	5	14.0<	5.00<	5.00<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999 -999						
-999 -999							
-999	-999	-999	-999 -999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
							-999
-999	-999	-999	-999	-999	-999	-999	-999

ENDRIN	DIELDRIN	P P'-DDF	O,P'-DDE	O,P'-DDD	P,P'-DDD	P,P'-DDT	O,P'-DDT
WH ORG		WH ORG	WH ORG		WH ORG	WH ORG	WH ORG
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49370		#49372	#49373	#49374	#49375	#49376	#49377
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

ENDRIN	DIELDRIN	P.P'-DDE	O,P'-DDE	O,P'-DDD	P,P'-DDD	P,P'-DDT	O,P'-DDT
WH ORG	WH ORG	WH ORG	WH ORG	WH ORG	WH ORG	WH ORG	WH ORG
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
#49370	#49371	#49372	#49373		#49375	#49376	#49377
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999

							FILTERED
DCPA	T-CHLORE	C-CHLORE	DANE		FII TERED	FILTERED	
WH ORG	WH ORG	WH ORG		METRIBUZ			0.7
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#49378	#49379	#49380	#49381	#82630	#82661	#82663	#82664
-999	-999	-999	-999		.0060<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0060<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999	-999	-999	-999	-999	-999
5.00<	5	5	-999		-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999		62E	-999	-999	-999	-999
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.190<	.0100<	.0040<	.0020<
-999			-999			.0040<	
	-999	-999			.0020<	.0040<	.0020<
-999	-999	-999	-999		.0020<		.0020<
-999	-999	-999	-999			.0040<	.0020<
-999	-999	-999	-999		.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999	-999		.0020<	.0040<	.0020<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999 -999	-999 -999	-999 -999	-999 -999	-999 -999	-999 -999	-999 -999	-999 -999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999 -999	-999	-999	-999 -999	-999
-999	-999	-999	-999		-999		
-999	-999	-999		.004<	.0020<	-999 .0040<	-999 .0020<
-999 -999	-999	-999 -999		.004<	.0020< .0020<	.0040<	.0020<
	-999	-999		.004<		.0040<	.0020<
-999	-999				.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.005<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.010<	.0022<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999 -999	-999	-999		.008<	.0020<	.0040<	.0020<
	-999	-999			.0020<		.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999		.006<	.0020<	.0040<	.0020<
-999	-999	-999		.010<	.0039<	.0040<	.0020<
-999	-999	-999		.004<	.0020<	.0040<	.0020<
-999	-999	-999	-999	.004<	.0020<	.0040<	.0020<

DCPA								FILTERED
WH ORG	DCPA	T-CHLORE	C-CHLORE) ANF		FII TERED	FII TERED	
(ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/l) (u					METRIBLIZ			
#49378 #49389 -999 -999 -999 .000 .0000 .								
-999 -999 -999 -999 -999 -999 -904 -0020 -999					, , ,			, ,
-999 -999 -999 -999 -999 -999 -004< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020< .0040< .0020								
-999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .0066 .0040 .0020 -999 -999 -999 -999 .006 .0040 .0020 -999 -999 -999 -999 .0040 .0040 .0020 -999 -999 -999 .999 .0040 .0040 .0020 -999 -999 -999 .999 .0040 .0020 .0020 -999 -999 -999 .999 .0040 .0020 .0020 -999 -999 -999 .999 .0040 .0020 .0020 -999 -999 -999 .999 .0020 .0040 .0020 -999 -999 -999 .999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .099 .099 .099 .999 .999 .999								
-999 -999 -999 -999 -999 -909 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 -999 .030 .0040 .0020 -999 -999 -999 .036 .0040 .0040 .0020 -999 -999 -999 .999 .094 .0040 .0020 -999 -999 -999 -999 .099 .0088 .0040 .0020 -999 -999 -999 .999 .043 .0088 .0040 .0020 -999 -999 -999 .999 .046 .0082 .0040 .0020 -999 -999 -999 .999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .099 .								
-999 -999 -999 -999 -099 -099 -099 -099 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -090 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 -999 .012 .0040 .0020 -999 -999 -999 .999 .024 .0081 .0040 .0020 -999 -999 -999 .999 .990 .040 .0020 -999 -999 -999 .991 .011 .0315 .0040 .0020 -999 -999 -999 .999 .029 .0020 .0040 .0020 -999 -999 -999 .999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .099 .099 .9								
-999 -999 -999 .999 .024 .0081 .0040 .0020 -999 -999 -999 .999 .043 .0088 .0040 .0020 -999 -999 -999 .999 .099 .0040 .0020 -999 -999 -999 .099 .0040 .0020 -999 -999 -999 .099 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .999 .999 .								
-999 -999 -999 -999 .043 .0040 .0020 -999 -999 -999 .999 .011 .0315 .0040 .0020 -999 -999 -999 .999 .046 .0082 .0040 .0020 -999 -999 -999 .999 .020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .002 .0020 .0040 .0020 -999 -999 -999 .999 .002 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .099 .099 .999 .999 .999 .999 .999 .999 .999 .999 .								
-999 -999 -999 -999 .046 .0082 .0040 .0020 -999 -999 -999 .999 .029 .0020 .0040 .0020 -999 -999 -999 .999 .099 .090 .0040 .0020 -999 -999 -999 .999 .090 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .								
-999 -999 -999 .999 .046 .0082 .0040 .0020 -999 -999 -999 .999 .0020 .0040 .0020 -999 -999 -999 .999 .094 .0020 .0040 .0020 -999 -999 -999 .999 .099 .090 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .999 -999 .999 .999 -999 .999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 -999 .000 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .0040 .0020 -999 -999 -999 .999 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .								
-999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .089 .0044 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 -999 .999 .999 -999 -999 -999 .999 .999 .999 .999 -999 -999 -999 .999 .999 .999 .999 -999 -999 -999 .999 .999 .999 .999 -999 -999 -999 .999 .999 .999 .999 .999 -999								
-999 -999 -999 -999 .004 .0040 .0020 -999 -999 -999 .020 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999								
-999 -999 -999 .020 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .004 .0020 .0040 .0020 -999 -999 -999 .999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .099 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
-999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .999 .999 -999 .9								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .099 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999<								
-999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 .099 .004 .0020 .0040 .0020 -999 -999 -999 -999 .099 .099 .0040 .0020 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
-999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 .004 .0020 .0040 .0020 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -9								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 -999 -999 -999 -999 -999 -99								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td></td></td<>	-999	-999	-999	-999	-999	-999	-999	
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-999</td></td<>								-999
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-999</td></td<>								-999
-999 -999 <td< td=""><td></td><td></td><td>-999</td><td></td><td></td><td></td><td></td><td>-999</td></td<>			-999					-999
-999 -999 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-999</td></td<>								-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td></td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999		-999	-999
-999 -999 <td< td=""><td>-999</td><td></td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999		-999	-999	-999	-999	-999	-999
-999 -999 -999 <.004	-999	-999	-999	-999	-999	-999	-999	-999
-999 -004 <.002	-999	-999	-999	-999	-999	-999	-999	-999
-999 -004 -002 -999 -999 -999 -999 -004 -999 -004 <.002	-999	-999	-999	-999	<.004		<.004	<.002
-999 -004 <.002	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -004 -999 <.004	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -004 -999 <.004								-999
-999 -999 -999 004 -999 <.004			-999	-999	-999			-999
-999 -999 -999 <.004 -999 <.004 <.002								
-999 -999 -999 -999 <.004 -999 <.004 <.002	-999	-999	-999					<.002

							FILTERED
DCPA	T-CHLORE	C-CHLORE	DANE		FILTERED	FILTERED	PHORATE
WH ORG	WH ORG	WH ORG	DIBUTYLP	METRIBUZ	TRIFLURA	ETHALFLU	0.7
(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#49378	#49379	#49380	#49381	#82630	#82661	#82663	#82664
-999	-999	-999	-999	0.72	-999	<.004	<.002
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	<.004	-999	<.004	<.002
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	0.017	-999	<.004	<.002
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	<.004	-999	<.004	<.002
-999	-999	-999	-999	0.005	-999	<.004	<.002
-999	-999	-999	-999	1.1	-999	<.004	0.013
-999	-999	-999	-999	0.054	-999	<.004	<.002
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	<.004	-999	<.004	<.002
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	<.004	-999	<.004	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	<.004	-999	<.004	-999
-999	-999	-999	-999	0.034	-999	<.004	-999
-999	-999	-999	-999	<.004	-999	<.004	-999
-999	-999	-999	-999	0.713	-999	<.004	-999
-999	-999	-999	-999	-999	-999		-999
-999	-999	-999	-999	<.01	-999	<.004	-999

FILTERED	FII TERED		FII TERED	FILTERED		FII TERED	FILTERED
	LINURON		EPTC				ETHOPRO
0.7					TEBUTHIL		0.7
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#82665	#82666	#82667	#82668	#82669	#82670	#82671	#82672
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999			-999	
-999	-999	-999	-999		-999	-999	
.0070<	.0020<	.0060<	.0020<	.0040<		.0280<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<		.0130<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01		.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0100<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		1.40<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0080<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0060<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
		.0060<					
.0070<	0.002		.0020<	.0040<	.0100<	.0040<	.0030<
-999	-999	-999	-999	-999	-999	-999	-999
-999 -999	-999 -999	-999 -999	-999 -999		-999 -999	-999 -999	-999 -999
-999	-999	-999	-999 -999	-999	-999	-999	-999
-999	-999	-999	-999 -999		-999	-999	-999
-999	-999	-999	-999 -999	-999	-999	-999	-999
-999	-999	-999	-999 -999		-999	-999	-999
-999	-999	-999	-999			-999	
-999	-999	-999	-999			-999	
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
	.0020<						
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040< .0116<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0078<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0078<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0042<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100E	.0034<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0034<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0175<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0151<	.0030<
.0070<	.0020<	.0200<	.0020<	.0040<		.0053<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0137<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0124<	.0030<

FILTERED	FILTERED		FILTERED	FILTERED		FILTERED	FILTERED
TERBACIL	LINURON	METHYL	EPTC	PEBULATE	FILTERED	MOLINATE	ETHOPRO
0.7	0.7	PARATHIC	0.7 REC	0.7	TEBUTHIL		0.7
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#82665	#82666	#82667	#82668	#82669	#82670	#82671	#82672
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0105<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0138<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0710<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040E	0.0096	1.84<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040E	0.0168	.0352<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.124<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040E	0.0093	.513<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040E	0.0124	.308<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040E	0.0157	.102<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0249<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.171<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0271<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100<	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.739<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.103<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0363<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<		.0156<	.0030<
-999	-999	-999	-999	-999	-999	-999	
.0070<	.0020<	.0060<	.0020<	.0040<	.0100E	.0040<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100E	.0034<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	.0100E	.0035<	.0030<
.0070<	.0020<	.0060<	.0020<	.0040<	0.01	.0041<	.0030<
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	
<.007	<.002	<.006	<.002	<.004	<.01	<.004	<.003
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	-999
<.007	<.002	<.006	<.002	<.004	<.01	<.004	<.003
<.007	<.002	<.006	<.002	<.004	<.01	<.004	<.003
<.007	<.002	<.006	<.002	<.004	<.01	<.004	<.003
\. 001	∼. 00∠	∼. 000	∼. 00∠	∼. ∪∪ +	√. ∪1	\. 00+	\. 000

FILTERED	FILTERED		FILTERED	FILTERED		FILTERED	FILTERED
TERBACIL	LINURON	METHYL	EPTC	PEBULATE	FILTERED	MOLINATE	ETHOPRO
0.7	0.7	PARATHIC	0.7 REC	0.7	TEBUTHIL	0.7	0.7
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)
#82665	#82666	#82667	#82668	#82669	#82670	#82671	#82672
<.007	<.002	<.006	<.002		<.01	0.53	<.003
-999	-999	-999	-999	-999	-999	-999	-999
<.007	<.002	<.006	<.002	<.004	<.01	0.153	<.003
-999	-999	-999 -999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.007	<.002	<.006	<.002	<.004	<.01		<.003
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.007	<.002	<.006	<.002	<.004	<.01	0.007	<.003
				<.004		0.007	<.003
<.007	<.002	<.006	<.002	<.004	<.01	1.43	<.003
<.007	<.002	<.006	<.002	<.004	<.01	0.603	<.003
-999	-999	-999	-999	-999	-999	-999	-999
		<.006					<.003
-999	-999	-999	-999	-999	-999	-999	-999
		-999					
-999	<.002	<.006	<.002	<.004	<.001	E.004	<.003
-999	-999	-999	-999	-999	-999	-999	-999
-999		-999					
-999	-999	-999	-999	-999	-999	-999	-999
-999	<.002	<.006	<.002	<.004	<.001	<.004	<.003
-999	<.002	<.006	<.002	<.004	0.015	E.004	<.003
-999	<.002	<.006	<.002	<.004	<.001	0.273	<.003
		<.006	<.002	<.004	<.001	3.24	
-999	-999	-999	-999	-999	-999	-999	-999
-999	<.002	<.006	<.002	<.004	<.001	0.196	<.003

		FILTERED	EII TEDED		EII TEDEN	EII TEDEN	FILTERED
EII TEDEN	EII TEDEN			FILTERED			
	CARBOFU			DISULFOT		0.7	0.7
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#82673	#82674		#82676	#82677	#82678	#82679	#82680
.0020<		.0130<					
.0020<	.0030<	.0130<	.0030<	.0170< .0170<	.0010< .0010<	.0040<	.0030<
		.0130<					
.0020<	.0030<		.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010E	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	0.001	.260E	0.008
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999		-999	-999	-999
-999	-999	-999	-999			-999	
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<			.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040E	.0206<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040E	.0066<

.0020 .0030 .0130 .0030 .0170 .0010 .0030 .999 .9030 .0030 .0030 .0030 .0030 .0030 .0030 .0040 .0030 .0030 .0040 .0030 .0030 .0040 .0030 .0040 .0030 .0040 .0030 .0040 .0030 .0040 .0040 .0030 .0040 .0040 .0030 .0040 .0040 .0030 .0040			EII TEDED	EII TEDED		EII TEDEN	EII TEDEN	EII TEDEN
BENFLUR CARBOFU 0.7 0.7 0.1 0.7 0.	EII TEDEN	EII TEDEN						
(ug/l) (ug/l)<								
#82673 #82674 #82675 #82676 #82677 #82678 #82679 #82680 .0020 .0030 .0130 .0030								
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0001 .0188 .003 .0020 .0030 .0130 .0030 .0170 .0001 .004 .003 .0020 .0030 .0130 .0030 .0170 .0001 .0182 .003 .0020 .0030 .0130 .0030 .0170 .0001 .0382 .003 .0020 .0030 .0130 .0030 .0170 .0001 .388 .003 .0020E .280 .0130 .0030 .0170 .0010 .0040 .003 .0020 .0037 .0130 .0030 .0170 .0010 .0040 .0030 <td< td=""><td>_ ` • /</td><td></td><td></td><td></td><td></td><td></td><td></td><td>, ,</td></td<>	_ ` • /							, ,
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0001 .088 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0046 .0217E .0020 .0030 .0130 .0030 .0170 .0010 .00182 .003 .0020 .0030 .0130 .0030 .0170 .0011 .0182 .003 .0020 .0030 .0130 .0030 .0170 .0011 .661 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0011 .0188 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0040E .0217E .0020 .0030 .0130 .0030 .0170 .0010 .0040E .0217E .0020 .0030 .0130 .0030 .0170 .0001 .092 .003 .0020 .0030 .0130 .0030 .0170 .001 .992 .003 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0170 0.001 .018 0.003 .0020 .0030 .0130 .0030 .0170 0.001 2.05 0.003 .0020 .0030 .0130 .0030 .0170 0.001 .0040E .0217E .0020 .0030 .0130 .0030 .0170 0.001 .092 .003 .0020 .0030 .0130 .0030 .0170 0.001 .982 .003 .0020E .280 .0130 .0030 .0170 0.001 .982 .003 .0020E .280 .0130 .0030 .0170 .0010 .0040 .003 .0020E .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
.0020 .0030 .0130 .0030 .0170 .0.001 2.05 0.003 .0020 .0030 .0130 .0030 .0170 .0010 .0040E .0217E .0020 .0030 .0130 .0030 .0170 .0.001 .092 .0.03 .0020 .0030 .0130 .0030 .0170 .0.001 .992 .0.03 .0020 .0030 .0130 .0030 .0170 .0.001 .284 .0.03 .0020 .0030 .0130 .0030 .0170 .0.010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0170 .0010 .0040E .0217E .0020 .0030 .0130 .0030 .0170 .0011 .0992 .0030 .0020 .0030 .0130 .0030 .0170 .0001 .0992 .003 .0020 .0030 .0130 .0030 .0170 .0001 .584 .003 .0020E .280 .0130 .0030 .0170 .0010 .0040 .0030 .0020E .0197 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0170 0.001 .0182 0.003 .0020 .0030 .0130 .0030 .0170 0.001 .092 0.003 .0020 .0030 .0130 .0030 .0170 0.001 .584 0.003 .0020E .280 .0130 .0030 .0170 0.001 .561 0.003 .0020E .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020E .0197 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0170 0.001 .0992 0.003 .0020 .0030 .0130 .0030 .0170 0.001 .238 0.003 .0020E .280 .0130 .0030 .0170 .0010 .0040 .0030 .0020E .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020E .0197 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0170 0.001 .238 0.003 .0020E .280 .0130 .0030 .0170 0.001 .561 0.003 .0020E .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020E .0197 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020E .280 .0130 .0030 .0170 .0.01 .561 0.003 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 E .0197 .0130 .0030 .0170 .0010 .0040 .0290 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010								
.0020 .0030 .0130 .0030 .0010 .0040 .0030 .0020E .0197 .0130 .0030 .0170 .0010 .0040E .0290 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020								
.0020E .0197 .0130 .0030 .0170 .0010 .0040E .0290 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030								
.0020 .0030 .0130 .0030 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020								
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0202 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0017 .0010 .0040 .0030 .002								
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .999 .								
.0020 .0030 .0130 .0030 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0920 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0920 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .99								
.0020 .0030 .0130 .0030 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .999 .999 .999 .999 .999 .999 .999 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0999 .999								
.0020 .0030 .0130 .0030 .0170 .0010 .0030 .999 .9030 .0030 .0030 .0030 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .0010 .0040 .0030 .0030 .0030 .0010 .0040 .0030 .0030 .002 .0030 .002 .0030 .002 .0030<								
-999 -999 <t< td=""><td>.0020<</td><td></td><td>.0130<</td><td>.0030<</td><td>.0170<</td><td>.0010<</td><td>.0040<</td><td>.0030<</td></t<>	.0020<		.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .	.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .099 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999	-999					-999	-999	-999
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .	.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
.0020 .0030 .0130 .0030 .0170 .0010 .0040 .0030 -999	.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
-999 -999 <td< td=""><td>.0020<</td><td>.0030<</td><td>.0130<</td><td>.0030<</td><td>.0170<</td><td>.0010<</td><td>.0040<</td><td>.0030<</td></td<>	.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
-999 -999 <td< td=""><td>.0020<</td><td>.0030<</td><td>.0130<</td><td>.0030<</td><td>.0170<</td><td>.0010<</td><td>.0040<</td><td>.0030<</td></td<>	.0020<	.0030<	.0130<	.0030<	.0170<	.0010<	.0040<	.0030<
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td></td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>		-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td></td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999		-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td></td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999		-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
<.002	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <td< td=""><td><.002</td><td><.003</td><td><.013</td><td><.003</td><td><.017</td><td><.001</td><td><.004</td><td><.003</td></td<>	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003
-999 -999 <td< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></td<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <th< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></th<>	-999	-999	-999	-999	-999	-999	-999	-999
-999 -999 <th< td=""><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td><td>-999</td></th<>	-999	-999	-999	-999	-999	-999	-999	-999
<.002 <.003 <.013 <.003 <.017 <.001 <.004 <.003	-999	-999	-999	-999	-999	-999	-999	-999
<.002 <.003 <.013 <.003 <.017 <.001 <.004 <.003	<.002	<.003	<.013	<.003	E.013	<.001	<.004	<.003
	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003
	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003

		FILTERED	FILTERED		FILTERED	FILTERED	FILTERED
FILTERED							CARBARY
BENFLUR/	CARBOFU	0.7	0.7	DISULFOT	0.7	0.7	0.7
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
#82673	#82674	#82675	#82676	#82677	#82678	#82679	#82680
		<.013	<.003	<.017	<.001	0.12	<.003
		-999					
<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003
-999	-999	-999 -999	-999	-999	-999	-999	-999
		<.013					
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999 -999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003
				<.017			
<.002	E.074	<.013 <.013	<.003	<.017	<.001	0.33	<.003
		-999					
		<.013					
-999	-999	-999	-999	-999	-999	-999	-999
		-999					
<.002		<.013					
-999	-999	-999	-999	-999	-999	-999	-999
-999	-999	-999	-999	-999	-999	-999	-999
-999		-999					
<.002	<.003	<.013	<.003				
<.002	E.085	<.013	<.003	<.017	<.001	<.004	
<.002	<.003	<.013	<.003	<.017	<.001	0.02	<.003
		<.013	<.003	<.017	<.001	0.032	E.009
		-999					
<.002	<.04	<.013	<.003	<.017	<.001	<.004	<.003

	FILTERED						
FILTERED	DCPA	FILTERED	FILTERED	FILTERED	METHYL	FILTERED	
THIOBENO	0.7 REC	PENDIME1	NAPROPA	PROPARG	AZINPHOS	PERMETH	RIN
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
#82681	#82682		#82684	#82685	#82686	#82687	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0200<		.150<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
-999	-999	-999	-999		-999	-999	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020E	.0008<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	

	FILTERED						
FILTERED			FILTERED	FILTERED	METHYL	FILTERED	
THIOBENO						PERMETH	
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
	#82682		#82684	#82685	#82686	#82687	
.0020<	.0020E	.0236<	.0030<	.0130<	.0010<	0.005	
.0020<		.0468<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0611<		.0716<	.0030<	.0130<	.0010<	0.005	
.0488E		.330<	.0030<	.0130<	.0010<	0.005	
.0034<		.0353<	.0030<	.0130<	.0010<	0.005	
.0162<		.0215<	.0030<	.0130<	.0010<	0.005	
.0411<		.0619<	.0030<	.0130<	.0010<	0.005	
.0296E		.0866<	.0030<	.0130<	.0010<	0.005	
.0050<	0.002			.0130<	.0010<	0.005	
.0020<		.0906<	.0030<	.0130<	.0010<	0.005	
	.0273<	.0040<		.0606<	.0010<	0.005	
.0020<	.0020<	.0200<	.0030<	.0130<	.0010<	0.005	
.0020E	.0032<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020E	.0013<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0100<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
-999	-999	-999	-999			-999	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
.0020<	.0020<	.0040<	.0030<	.0130<	.0010<	0.005	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999			-999	
-999	-999		-999				
-999	-999	-999	-999			-999	
-999	-999	-999	-999			-999	
-999	-999	-999	-999				
-999	-999	-999	-999				
-999	-999	-999	-999			-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
<.002	<.002	<.004	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
	<.002	<.004	<.003	<.013	<.001	<.005	
<.002 <.002							
	<.002	<.004	<.003	<.013	<.001	<.005	
<.002	<.002	<.004	<.003	<.013	<.001	<.005	

	FILTERED						
FILTERED	DCPA	FILTERED	FILTERED	FILTERED	METHYL	FILTERED	
THIOBENO	0.7 REC	PENDIME1	NAPROPA	PROPARG	AZINPHOS	PERMETH	RIN
(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
#82681	#82682	#82683	#82684	#82685	#82686	#82687	
0.099	<.002	0.15	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
<.002	E.002	<.004	<.003	<.013	<.001	E.002	
-999	-999	-999	-999	-999	-999	-999 -999	
-999	-999	-999	-999	-999	-999	-999	
<.002	<.002	<.004	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999 -999	
-999	-999	-999	-999	-999	-999	-999	
<.002	<.002	<.004	<.003	<.013	<.001	<.005	
<.002	<.002	E.032	<.003	<.013	<.001	<.005	
0.276	<.002	0.232 0.019	<.003	<.013	<.001	<.005	
0.018	<.002	0.019	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
0.011	<.002	<.004	<.003	<.013	<.001	<.005	
		-999					
		-999					
<.002	<.002	<.004	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
-999	-999	-999	-999	-999	-999	-999	
<.002	<.002	<.004 0.083	<.003	<.013	<.001	<.005	
<.002	<.002	0.083	<.003	<.013	<.001	<.005	
<.002	<.002	<.004	<.003	<.013	<.001	<.005	
1.06	<.002	0.169	<.003	<.013	<.001	<.005	
-999	-999	-999	-999	-999	-999	-999	
<.002	0.015	<.02	<.003	<.013	<.001	<.005	

RESIDUE	Table B5. Se	lected v	vater quality	data for the N	Aississippi Riv	er at Thebes,	IL.								
TOTAL NITRO- NI						,		NITRO-							NITRO-
Turn					NITRO-	NITRO-				PHOS-	IRON.		NITRO-	NITRO-	
DATE TIME BID. SUS- TOTAL TOTAL TOTAL TOTAL MOSIL					GEN,		AMMONIA		PHOS-	PHORUS	,	NITRO-		GEN	ORGANIC
			TUR-	DEG. C,	NO2+NO3	AMMONIA	UN-	ORGANIC	PHORUS	DIS-	RECOV-	GEN	DIS-	ORGANIC	DIS-
NTU (MGL) AS N AS P AS F AS F AS N	DATE	TIME	BID-	SUS-	TOTAL	TOTAL	IONIZED	TOTAL	TOTAL	SOLVED	ERABLE	TOTAL	SOLVED	TOTAL	SOLVED
COCO76 COCO30 COCO30 COCO610 COCO610 COCO65 COCO665 COCO666 CO10 COCO60 COCOC0 COCOC05 CO			ITY	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(uG/L)	(MG/L	(MG/L	(MG/L	(MG/L
11/02/1994 700 9.7 83 1.66 0.06 <.001 0.75 0.18 0.11 1900			(NTU)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS FE)	AS N)	AS N)	AS N)	AS N)
01/12/1995 900 4.7 47 1.87 0.19 0.003 0.94 0.15 0.06 1200			(00076)	(OO530)	(OO630)	(OO610)	(OO619)	(OO625)	(OO665)	(OO666)	(O1O45)	(00600)	(OO6O2)	(00605)	(00607)
03/21/1995 900 13	11/02/1994	700	9.7	83	1.66	0.06	<.001	0.75	0.18	0.11	1900				
05/23/1995 1030 49 250 1.8 0.09 0.001 0.95 0.34 0.08 11000	01/12/1995	900	4.7	47	1.87	0.19	0.003	0.94	0.15	0.06	1200				
07/27/1995 900 27 306 3.5 <.01 <.001 0.85 0.3 0.11 5900	03/21/1995	900	13	138		0.15	0.003	1.5		0.05	3100				
09/06/1995 900	05/23/1995		49	250		0.09	0.001	0.95							
11/06/1995 1530 24 1.1 0.6 0.16 0.1 1.7 1.6 0.56 11/27/1995 1400 22 2 0.7 0.19 0.09 2.7 2.5 0.62 12/12/1995 1400 22 2 0.7 0.19 0.09 2.7 2.5 0.62 12/12/1996 1525 32 2.1 0.9 0.24 0.09 3 2.6 0.7 02/20/1996 1540 36 2.2 1.1 0.27 0.13 3.3 3 0.78 03/12/1996 1500 74 2.1 1.1 0.28 0.13 3.2 2.8 0.87 03/12/1996 1530 25 1.6 0.8 0.16 0.11 2.4 2 0.77 03/12/1996 1540 36 1.7 0.8 0.18 0.11 2.4 2 0.77 04/22/1996 1450 36 1.7 0.8 0.18				306		<.01		0.85							
11/27/1995		_		172		0.11	0.007				3400				
12/12/1995 947 4.6 1.9 0.7 0.05 0.07 2.6 2.3 0.7	11/06/1995	-											.	0.56	0.46
01/22/1996 1525 32 2.1 0.9 0.24 0.09 3 2.6 0.7 02/20/1996 1540 36 2.2 1.1 0.27 0.13 3.3 3 0.78 03/21/1996 1500 74 2.1 1.1 0.28 0.13 3.2 2.8 0.87 03/26/1996 1330 25 1.6 0.8 0.16 0.11 2.4 2 0.77 04/08/1996 1540 36 1.7 0.8 0.18 0.07 2.5 2.2 0.8 04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1540 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.7 0.19 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2 2.3 1.4 0.09 4.3 2.6 2.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1		_													
02/20/1996 1540 36 2.2 1.1 0.27 0.13 3.3 3 0.78 03/12/1996 1500 74 2.1 1.1 0.28 0.13 3.2 2.8 0.87 03/26/1996 1330 25 1.6 0.8 0.16 0.11 2.4 2 0.77 04/08/1996 1540 36 1.7 0.8 0.18 0.07 2.5 2.2 0.8 04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.46 0.08 4.1 3 1.6 07/17/1996 1620 110 3.5 0.16 0.11	12/12/1995	_													
03/12/1996 1500 74 2.1 1.1 0.28 0.13 3.2 2.8 0.87 03/26/1996 1330 25 1.6 0.8 0.16 0.11 2.4 2 0.77 04/02/1996 1540 36 1.7 0.8 0.18 0.07 2.5 2.2 0.8 04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.46 0.08 4.1 3 1.6 07/17/1996 1520 110 3.5 1.6 0.66 0.13 5.1 3.9 1.6 07/17/1996 150 31 2 0.7 0.19															
03/26/1996 1330 25 1.6 0.8 0.16 0.11 2.4 2 0.77 04/08/1996 1540 36 1.7 0.8 0.18 0.07 2.5 2.2 0.8 04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/02/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16															-
04/08/1996 1540 36 1.7 0.8 0.18 0.07 2.5 2.2 0.8 04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 <td></td>															
04/22/1996 1455 27 1.6 0.9 0.23 0.08 2.5 2 0.83 05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 </td <td></td> <td>.</td> <td>-</td> <td></td>													.	-	
05/06/1996 1545 83 1.4 1.2 0.38 0.09 2.6 1.9 1.2 05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 </td <td></td> <td>.</td> <td></td> <td>-</td>													.		-
05/22/1996 1610 82 2.5 1.6 0.46 0.08 4.1 3 1.6 06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 <td></td>															
06/17/1996 1520 110 3.5 1.6 0.56 0.13 5.1 3.9 1.6 07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38<		-											_		
07/17/1996 1610 24 3.1 0.6 0.16 0.11 3.7 3.5 0.56 08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 </td <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>-</td>		_											_		-
08/12/1996 1450 31 2 0.7 0.19 0.11 2.7 2.3 0.66 09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714<													.		
09/09/1996 1500 39 1.2 0.5 0.16 0.11 1.7 1.6 0.47 10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6															
10/21/1996 1530 20 0.78 0.6 0.15 0.06 1.4 1.1 0.52 12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6		_													-
12/16/1996 1530 24 2.1 0.7 0.18 0.07 2.8 2.5 0.59 01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6															
01/27/1997 1425 39 2.2 1 0.23 0.08 3.2 2.9 0.74 02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6															
02/24/1997 1515 380 2 2.3 1.4 0.09 4.3 2.6 2.1 03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6		-													
03/12/1997 1430 72 2.4 1.4 0.38 0.08 3.8 3 1.1 03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6															
03/26/1997 1700 55 2.55 1.2 0.404 0.126 3.7 3.1 1 04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6														+	0.41
04/15/1997 1315 0.8 2.36 1.6 0.714 0.069 4 2.8 1.6															-
	04/15/1997		0.8 78		2.36			1.6 1.2				3.3			

			RESIDUE				NITRO-							NITRO-
			TOTAL	NITRO-	NITRO-		GEN, AM-		PHOS-	IRON,		NITRO-	NITRO-	GEN
			AT 105	GEN,	GEN,	AMMONIA	MONIA +	PHOS-	PHORUS	TOTAL	NITRO-	GEN	GEN	ORGANIC
		TUR-	DEG. C,	NO2+NO3	AMMONIA	UN-	ORGANIC	PHORUS	DIS-	RECOV-	GEN	DIS-	ORGANIC	DIS-
DATE	TIME	BID-	SUS-	TOTAL	TOTAL	IONIZED	TOTAL	TOTAL	SOLVED	ERABLE	TOTAL	SOLVED	TOTAL	SOLVED
		ITY	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(uG/L)	(MG/L	(MG/L	(MG/L	(MG/L
		(NTU)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS FE)	AS N)	AS N)	AS N)	AS N)
		(00076)	(OO530)	(OO630)	(OO610)	(OO619)	(OO625)	(OO665)	(OO666)	(O1O45)	(00600)	(00602)	(00605)	(00607)
05/22/1997	1600	0.3		2.42			0.85	0.238	0.07		3.3	2.8	0.79	0.37
06/11/1997	1535	30		2.55			0.84	0.186	0.071		3.4	2.9	0.8	0.32
07/09/1997	1600	60		3.03			0.38	0.174	0.165		3.4	3.4	0.38	
07/21/1997	1520	42		1.96			0.77	0.259	0.105		2.7		0.77	•
08/13/1997	1540			1.31			0.73		0.093		2	1.7		-
08/20/1997	1450	19		0.91			0.79		0.093		1.7	1.4		
09/17/1997	1530	27		<.05			0.52		0.086		0.52		0.52	-
10/20/1997	1600	25		0.905			0.55		0.096		1.5		0.52	
11/24/1997	1545	15		1.45			0.37	0.063	0.07		1.8		.	
01/07/1998	1325	38		1.71			0.78		0.092		2.5		0.74	
02/02/1998	1520	12		1.38			0.55		0.057		1.9			-
03/04/1998	1325	72		2.93			0.21	0.692	0.1		3.1	3.3		-
03/24/1998	1255	140		2.14			0.73		0.07		2.9			
04/16/1998	1350	100		3.64			1.2		0.089		4.9		1.2	-
05/07/1998	1055	52		3.59			1	0.329	0.082		4.6			0.4
05/21/1998	930	26		4.18			0.91	0.255	0.096		5.1	4.6		0.4
06/10/1998	1410	96		3.78			0.62	0.205	0.135		4.4	4.3		0.44
06/22/1998 07/22/1998	1525 1610	300 65		4.09 3.22			1.7	0.646 0.435	0.12 0.143		5.8 4.3			0.41
	1040	54		1.97			0.77		0.143		2.7	2.3		0.00
08/11/1998 08/26/1998	1335	24		1.97			0.77	0.263 0.229	0.116		2.7	2.3		0.28
08/26/1998	1335	27		1.86			0.33		0.133		1.8			
09/09/1998	1330	21		1.10			0.69	0.255	0.139		1.8	1.5		

			DEOIDUE				NITDO							NITDO
			RESIDUE	NITEO	NUTDO		NITRO-		51100	10011		NUTDO	NUTDO	NITRO-
				NITRO-	NITRO-		GEN, AM-		PHOS-	IRON,		NITRO-	NITRO-	GEN
				GEN,	,	AMMONIA	MONIA +	PHOS-	PHORUS	TOTAL	NITRO-	GEN	GEN	ORGANIC
			,	NO2+NO3		UN-	ORGANIC	PHORUS	DIS-	RECOV-	GEN	DIS-	ORGANIC	DIS-
DATE	TIME	BID-	SUS-	TOTAL	TOTAL	IONIZED	TOTAL	TOTAL	SOLVED	ERABLE	TOTAL	SOLVED	TOTAL	SOLVED
		ITY	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(uG/L)	(MG/L	(MG/L	(MG/L	(MG/L
		(NTU)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS FE)	AS N)	AS N)	AS N)	AS N)
		(00076)	(OO530)	(OO630)	(OO610)	(OO619)	(OO625)	(OO665)	(OO666)	(O1O45)	(00600)	(OO6O2)	(OO6O5)	(00607)
			RESIDUE				NITRO-							NITRO-
			TOTAL	NITRO-	NITRO-		GEN, AM-		PHOS-	IRON,		NITRO-	NITRO-	GEN
			AT 105	GEN,	GEN,	AMMONIA	MONIA +	PHOS-	PHORUS	TOTAL	NITRO-	GEN	GEN	ORGANIC
		TUR-	DEG. C,	NO2+NO3	AMMONIA	UN-	ORGANIC	PHORUS	DIS-	RECOV-	GEN	DIS-	ORGANIC	DIS-
DATE	TIME	BID-	SUS-	TOTAL	TOTAL	IONIZED	TOTAL	TOTAL	SOLVED	ERABLE	TOTAL	SOLVED	TOTAL	SOLVED
		ITY	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(uG/L)	(MG/L	(MG/L	(MG/L	(MG/L
		(NTU)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS FE)	AS N)	AS N)	AS N)	AS N)
		(00076)	(OO530)	(OO630)	(OO610)	(OO619)	(OO625)	(OO665)	(OO666)	(O1O45)	(00600)	(00602)	(OO6O5)	(00607)
Mean		53.006	166	2.2470408	0.12	0.0035	0.9045098	0.29328	0.096392157	4416.666667	3.04044444	2.653488372	0.836098	0.369412
Std Dev.		67.014757	98.514973	0.9141685	0.0509902	0.00251661	0.3951977	0.217070292	0.026225239	3605.227686	1.130233193	0.89505223	0.401689	0.070494
Std. Err		9.4773179	40.21857	0.1305955	0.02280351	0.00125831	0.0553388	0.030698375	0.003672268	1471.828039	0.168485217	0.136494185	0.062733	0.01209
95% CI		19.045747	103.38634	0.2625849	0.06331121	0.0040036	0.1111533	0.061691874	0.007376108	3783.499016	0.339566161	0.275461717	0.126791	0.024597
99% CI		25.400557	162.16838	0.3503087	0.10496215	0.00733687	0.1481962	0.082276004	0.009834271	5934.670796	0.453641493	0.368296749	0.169672	0.033046
size		51	6	51	6	6	51	51	51	6	51	51	49	49
Min		0.3	47	0.78	0.06	0.001	0.21	0.05	0.05	1200	0.52	1.1	0.14	0.2
Max		380	306	4.6	0.19	0.007	2.3	1.4	0.165	11000	5.8	4.6	2.1	0.48
Missing		0	0	0	0	0	0	0	0	0	0	0	0	_
Other		1	0	2	1	2	0	1	0	0	6	8	8	15

Table B5. Sel	ected v	1											
		NITRO-	NITRO-	NITRO-		NITRO-	NITRO-	PHOS-	PHOS-		CARBON,	SOLIDS.	
		GEN,	GEN,	GEN,	NITRO-	GEN, AM-	GEN,	PHATE,	PHORUS	CARBON,	ORGANIC	RESIDUE	
		AMMONIA	NITRITE	NITRATE	GEN,	MONIA +	NO2+NO3	ORTHO,	ORTHO,	ORGANIC	SUS-	AT 180	SEDI-
		DIS-	DIS-	DIS-	NITRATE	ORGANIC	DIS-	DIS-	DIS-	DIS-	PENDED	DEG. C	MENT
DATE	TIME	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SDIS-	SUS-
		(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
		AS N)	AS N)	AS PO4)	AS P)	AS C)	AS C)	(MG/L)	(MG/L)				
		(OO6O8)	(OO613)	(OO618)	(OO62O)	(OO623)	(OO631)	(OO66O)	(OO666)	(OO681)	(OO681)	(70300)	(8O154)
11/02/1994	700												
01/12/1995	900												
03/21/1995	900												
05/23/1995	1030												
07/27/1995	900												
09/06/1995	900												
11/06/1995	1530	0.04	0.01	1.09	1.09	0.5	1.1	0.25	0.08	6	0.7	348	133
11/27/1995	1400	0.08	0.01	1.99	1.99	0.5	2	0.28	0.09	5.2	0.6	393	124
12/12/1995	947	<.015	0.01	1.89	1.89	0.4	1.9	0.15	0.05	4.8	0.6	428	116
01/22/1996	1525	0.2	0.02	2.08	2.08	0.5	2.1	0.28	0.091	4.9	1.4	417	132
02/20/1996	1540	0.32	0.04	2.16	2.16	0.8	2.2	0.37	0.12			366	
03/12/1996	1500	0.23	0.03	2.07	2.07	0.7	2.1	0.25	0.08	4.9	2.6	349	222
03/26/1996	1330	0.03	0.02	1.58	1.58	0.4	1.6	0.29	0.093				
04/08/1996	1540	<.015	0.02	1.68	1.68	0.5	1.7	0.21	0.068	4.5	2.6	280	150
04/22/1996	1455	0.07	0.02	1.58	1.58	0.4	1.6	0.29	0.094				
05/06/1996	1545	0.04	0.03	1.37	1.37	0.5	1.4	0.22	0.072		1	224	
05/22/1996	1610		0.06		2.44	0.5	2.5			5.1		235	
06/17/1996	1520	0.03	0.03	3.47	3.47	0.4	3.5	0.31	0.1	4.5	1		
07/17/1996	1610	0.04	0.02	3.08	3.08	0.4	3.1	0.4	0.13		1	357	
08/12/1996	1450	0.04		1.97	1.97	0.3	2		0.1	3.9			
09/09/1996	1500	0.03		1.15	1.15	0.4	1.2	0.34		3.7	-		
10/21/1996	1530	0.08	0.03	0.75		0.3		0.23	0.074	4.7	-		
12/16/1996	1530	0.11	0.02	2.08		0.4		0.26			1		
01/27/1997	1425	0.26		2.17		0.7		0.27	0.088	4.8			
02/24/1997	1515	0.19	0.02			0.6		0.22				308	
03/12/1997	1430	0.25	0.03			0.6		0.37	0.12			248	397
03/26/1997	1700	0.14				0.6		0.23					
04/15/1997	1315	0.04				0.4		0.27	0.089				
04/28/1997	1525	0.03	0.02	2.07		0.5		0.19	0.062	4.8	2.6	275	<u> </u>

		NITRO-	NITRO-	NITRO-		NITRO-	NITRO-	PHOS-	PHOS-		CARBON,	SOLIDS,	
		GEN.	GEN.	GEN.	NITRO-	GEN, AM-	GEN,	PHATE,	PHORUS	CARBON.	,	RESIDUE	
		AMMONIA	NITRITE	NITRATE	GEN.	MONIA +	NO2+NO3	ORTHO,	ORTHO,	ORGANIC	SUS-	AT 180	SEDI-
		DIS-	DIS-	DIS-	NITRATE	ORGANIC	DIS-	DIS-	DIS-	DIS-	PENDED	DEG. C	MENT
DATE	TIME	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SDIS-	SUS-
		(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	PENDED
		AS N)	AS N)	AS PO4)	AS P)	AS C)	AS C)	(MG/L)	(MG/L)				
		(OO6O8)	(OO613)	(OO618)	(00620)	(OO623)	(OO631)	(OO66O)	(OO666)	(OO681)	(OO681)	(70300)	(8O154)
05/22/1997	1600	0.06	0.02	2.4		0.4		0.25	0.081	4.9	0.7	354	254
06/11/1997	1535	0.03	0.03	2.52		0.4		0.25	0.083	6.1	0.6	360	165
07/09/1997	1600	<.01	0.02	3.01		0.4		0.43	0.14	4.1	1.1	384	285
07/21/1997	1520	<.01	0.02	1.94		<.02		0.39	0.128	4.2	1	380	186
08/13/1997	1540	<.01	0.02	1.29		0.4		0.27	0.089	4.2	0.9	385	126
08/20/1997	1450	0.03	0.02	0.9		0.5		0.27	0.089	4.4	0.6	405	127
09/17/1997	1530	<.01	<.01			0.3		0.34	0.11	3.8	1.1	406	138
10/20/1997	1600	0.031	0.016	0.889		0.23		0.29	0.095	4.2	0.9	394	157
11/24/1997	1545	0.086	0.021	1.42		0.38		0.31	0.1	4		417	160
01/07/1998	1325	0.041	<.01			0.44		0.27	0.089	3.9	1.8	341	287
02/02/1998	1520	0.12	0.02	1.36		0.47		0.24	0.078	4	0.9	406	125
03/04/1998	1325	0.07	0.015	2.92		0.41		0.29	0.096	4.4	+	308	330
03/24/1998	1255	0.153	0.015	2.12		0.47		0.2		5.2		224	739
04/16/1998	1350	0.071	0.044			0.49		0.25		4.6		260	604
05/07/1998	1055	0.039		3.54		0.44		0.25		4.6	_	304	348
05/21/1998	930	0.029				0.43		0.27	0.088	4.1	+	347	198
06/10/1998	1410	<.02	0.045			0.47		0.36		4.3	+	307	472
06/22/1998	1525	0.043	0.011	4.08		0.45		0.41	0.134	3.8	+	268	1510
07/22/1998	1610	<.02	0.016			0.43		0.5		6.6		314	329
08/11/1998	1040	0.083	0.02	1.95		0.36		0.38		4.2		291	244
08/26/1998	1335	<.02	0.014	1.85		0.5		0.39		4.5		354	144
09/09/1998	1330	<.02	0.014	1.14		0.37		0.44	0.144	4.1	1.1	357	160

		NITRO-	NITRO-	NITRO-		NITRO-	NITRO-	PHOS-	PHOS-		CARBON.	SOLIDS.	
		GEN.	GEN,	GEN,	NITRO-	GEN, AM-	GEN.	PHATE,	PHORUS	CARBON,	,	RESIDUE	
		AMMONIA	NITRITE	NITRATE	GEN,	MONIA +	NO2+NO3	ORTHO,	ORTHO,	ORGANIC	SUS-	AT 180	SEDI-
		DIS-	DIS-	DIS-	NITRATE	ORGANIC	DIS-	DIS-	DIS-	DIS-	PENDED	DEG. C	MENT
DATE	TIME	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SDIS-	SUS-
		(MG/L	SOLVED	PENDED									
		AS N)	AS PO4)	AS P)	AS C)	AS C)	(MG/L)	(MG/L)					
		(00608)	(OO613)	(OO618)	(OO62O)	(OO623)	(OO631)	(OO66O)	(OO666)	(OO681)	(OO681)	(70300)	(8O154)
		NITRO-	NITRO-	NITRO-		NITRO-	NITRO-	PHOS-	PHOS-		CARBON,	SOLIDS,	
		GEN,	GEN,	GEN,	NITRO-	GEN, AM-	GEN,	PHATE,	PHORUS	CARBON,	ORGANIC	RESIDUE	
		AMMONIA	NITRITE	NITRATE	GEN,	MONIA +	NO2+NO3	ORTHO,	ORTHO,	ORGANIC	SUS-	AT 180	SEDI-
		DIS-	DIS-	DIS-	NITRATE	ORGANIC	DIS-	DIS-	DIS-	DIS-	PENDED	DEG. C	MENT
DATE	TIME	SOLVED	SOLVED	SOLVED	TOTAL	DIS.	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SDIS-	SUS-
		(MG/L	SOLVED	PENDED									
		AS N)	AS PO4)	AS P)	AS C)	AS C)	(MG/L)	(MG/L)					
		(00608)	(OO613)	(OO618)	(OO62O)	(OO623)	(OO631)	(00660)	(OO666)	(OO681)	(OO681)	(70300)	(8O154)
Mean		0.092235	0.025721	2.182535	1.973333	0.455455	2		0.096422	4.662222	2.145455	337.0222	
Std Dev.		0.079303	0.012633		0.652628		0.654654		0.024026	0.638638		55.65947	
Std. Err		0.0136	0.001926		0.168508	0.016368		0.011016		0.095203	0.276348	8.297224	
95% CI		0.027671	0.003888	0.267103	0.361421	0.03301	0.362543	0.022203	0.007218	0.191872	0.55732	16.72228	103.5477
99% CI		0.037176	0.005198		0.501663	0.044117	0.50322	0.029662	0.009643	0.25633	0.74484	22.34003	
size		49	51	51	21	51	21	51	51	51	51	51	51
Min		0.029	0.01	0.75	1.09			0.15		3.7	0.2	224	
Max		0.32	0.06		3.47	0.8			0.163			428	
Missing		0	0		0	_	0		_	0		0	_
Other		15	8	8	6	7	6	6	6	6	7	6	7

Table B6.	Well-wa	ater data fro	m the	e NR	CS c	of Misso	ouri.									
Well #	date	Na (mg/L)	Ca	Mg	CI	Cond	TDS	SAR	SO4	Nitrate-N	рН	CO3	HCO3	Р	K	В
Miss #1	######	6	92	45	2	0.42	421	0.1	45	0.7	6.9	0	400	0.29	2	0.06
Miss #2	######	10	81	27	2	0.41	417	0.2	<3	<.04	7	0	449	0.49	2	0.1
Miss # 3	######	6	73	24	2	0.36	351	0.2	29	0.06	7.3	0	337	0.31	1	0.05
NM #1	Sep-97	14	57	15	2	0.3	268	0.4	62	0.23	6.9	0	190	0.39	3	0.04
NM #2	Sep-97	189	143	43	326	1.45	901	3.5	60	0.04	6.3	0	107	0.65	5	0.04
NM #3	Sep-97	6	40	6	2	0.22	178	0.2	8	0.04	6.9	0	151	0.27	1	0.03
Miss #1	Jul-98	5	110	30	26	0.76	613	0.1	12	0.1	6.6	0	549	0.2	8	0.04
Miss #2	Jul-98	8	44	13	12	0.51	339	0.3	49	19.6	6.7	0	166	0.13	40	0.02
Miss #3	Jul-98	3	42	13	12	0.34	255	0.1	24	17.4	6.5	0	176	0.21	5	<.01
NM #1	Aug-98	9	16	11	7	0.13	89	0.4	5	1.43	5.5	0	43	0.45	2	0.01
NM #2	Aug-98	5	27	7	42	0.36	205	0.2	12	1.44	6	0	83	0.38	2	0.05
NM #3	Aug-98	5	7	3	10	0.33	170	0.4	11	27.4/<.04	5.9	0	56	3.01	7	0.21
Miss # 1	Aug-99	12	42	8	14	0.31	228	0.4	28	0.21	7.8	0	151	0.64	1	<.01
Miss #2	Aug-99	7	38	11	2	0.28	208	0.3	21	2.06	7.6	0	151	0.91	3	0.01
Miss #3	Aug-99	10	45	9	18	0.33	235	0.4	39	2.16	7.9	0	132	1.71	1	<.01
NM #1	Aug-99	11	25	9	10	0.24	165	0.5	23	2.45	6.9	0	95	0.38	1	<.01
NM #2	Aug-99	12	11	3	4	0.13	93	0.8	20	0.25	6.4	0	51	0.24	1	<.01
NM #3	Aug-99	11	48	12	8	0.39	214	0.4	30	5.8	6.6	0	61	1.15	1	<.01

nd = nondetectable

^{*} High values were retested

Table B6.	Well-wa											
Well #	date	Cyanazine	Alachlor	Trifluralin	Bentazone	Acifluorfen	Atrazine	Metochlor	Molinate	Pendimethalin	Fluometuron	Aldicarb
Miss #1	######	nd	nd	nd	nd	nd	nd	nd				
Miss #2	######	nd	nd	nd	nd	nd	nd	nd				
Miss # 3	######	nd	nd	nd	nd	nd	nd	nd				
NM #1	Sep-97	nd	nd	nd	nd	nd	nd	nd				
NM #2	Sep-97	nd	nd	nd	nd	nd	nd	nd				
NM #3	Sep-97	nd	nd	nd	nd	nd	nd	nd				
Miss #1	Jul-98	nd	nd	nd	nd	nd	nd	nd				
Miss #2	Jul-98	nd	nd	nd	nd	nd	nd	nd				
Miss #3	Jul-98	nd	nd	nd	nd	nd	nd	nd				
NM #1	Aug-98			nd	nd	10.6/nd	nd	nd	nd	nd		
NM #2	Aug-98			nd	nd	nd	nd	nd	nd	nd		
NM #3	Aug-98			nd	nd	nd	nd	nd	nd	2.32/nd	16.4/nd	nd
Miss # 1	Aug-99	nd	nd	nd	nd	nd	nd	nd				
Miss #2	Aug-99	nd	nd	nd	nd	nd	nd	nd				
Miss #3	Aug-99	nd	nd	nd	nd	nd	nd	nd				
NM #1	Aug-99			nd	nd	nd	nd	nd	nd	nd		
NM #2	Aug-99			nd	nd	nd	nd	nd	nd	nd		
NM #3	Aug-99			nd	nd	nd	nd	nd	nd	nd	nd	nd

nd = nondetectable

^{*} High values were retested

APPENDIX C

Spreadsheet Analysis

New Madrid Floodway - Ex	kpected Concen	trations, Runoff Co	pefficients, and Fu	nction Factors - Ni	trogen												
Contour Range	Cupross/Tupolo 16	Scrub/shrub marsh 19	DI U 40	Riparian 43	River 45	Onon water 24	March 20	Condhor 21	Cotton 26	Cotton/soybeans 37	Coulonno 20	Couhoons/som 20	Com 40	Horb Vog 41	Posturo I C Total		
Scenario 1 - Existing	Cypress/Tupelo To	Scrub/shrub marsh 19	DLTI 42	Ripariari 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Collon/soybeans 37	Soybeans 36	Soybeans/com 39	Com 40	nerb. veg. 41	Pasture LC Total		
Conditions (No Flood)																	
275 ft	6.7		42	0.1	0	0.9		0	0.8		18		0.1	2.9	1.7 73.	1	
Volume = 388	35.5622435								4.246238		95.54035568			15.39261286		1	
Concentration/Export Coefficient	33.3022433	1.5				4.777017764											
Wetland Function Factor	-0.8	-0.8								9.73	10	9.73	0.73	1.07	3.73		
Load	65.80064134	-0.6							10.04217	, ,	286.0468424	1	1 2552	30.68143086	10.276	Total Load	835.404630
							_									TOTAL LOAG	635.404630
Wetland Function Value	-52.64051307	(10.04217		286.0468424			30.68143086			
Net Yield WATERSHED FUNCTION	13.16012827	(82.49632646	0.196419825	0	6.187224484	С	0	9.256494	0	268.3690582	2 0	1.1571	27.8333434	17.606	Final Load % Net Removal	426.262135 48.9
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	171					170.8	0.2	0			1500.4	2.4	3.7			8	
280 ft	43.3	1.4	1 158.8	0.1		9.8	0.1				53.6	0.1	0.6	20.6	4.3 294.	6	
Volume Season 1 = 6707	483.7594905	30.55323098	1062.856378	0.282900287	3.111903155	483.1936899	0.565801	0	14.71081	18.38851864	4244.635903	6.789606884	10.467	319.960224	4 28.007		
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.77800407	7 16.026		
Concentration/Export Coefficient Season 1	1.5	1.5	5 1.5	1.5	1.5	1.5	1.5	1.5	6.75								
Concentration/Export Coefficient																	
Season 2	1.2	1.2		1.2		1.2		1.2	0	0	0	0	0	(0		
Wetland Function Factor	-0.8									1	1	1	1	·	1 1	1	
Load Season 1 *	895.0977664	56.53249051							34.32183		12407.91769						
Load Season 2 **	238.8847666	7.723756888	876.0947099	0.551696921	0	54.06629822	0.551697	0	10.48224	. 0	295.7095494	0.551696921	3.3102	113.6495656	3 23.723	Total Load	18669.9784
Wetland Function Value (Both																	
* Export Coefficients were	-907.1860264	-51.40499792	-2274.154041	-0.860116725	-1.15158777	-284.43515	-1.27888	0	44.80407	46.84811535	12703.62724	17.84946259	27.731	748.5812159	9 83.057		
reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	226.7965066	12.85124948	568.5385102	0.215029181	4.606351079	663.6820167	0.319719	0	41.03391	43.44569694	11888.67342	16.53801533	25.464	678.014179	75.502	Final Load	14245.6805
WATERSHED FUNCTION																% Net Removal	23.7
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	0.4	244.5	0.1	- 11	121.9	0.1		2.0	0.4	200.0	0.3	0.9	48.3	3 7.7 840.	4	
		3.1							2.6								
280 ft	43.3 231.6646835					9.8										0	
Volume Season 1 = 2190		8.07829605							6.775345	0.260590195	836.2339362	0.781770585		125.8650643			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.77800407	7 16.026		
Concentration/Export Coefficient																	
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.875	3.75		
Concentration/Export Coefficient																	
Season 2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0	0	0	0	0		ol ol		
Wetland Function Factor	-0.8	-0.8		-0.8	-0.2	-0.3	-0.8	-0.2	1	1	1	1	1		1 1		
Load Season 1 *	428.6480055	14.94723079	1178.902557	0.482168735	5.303856086	587.7636881	0.482169		16.08763	0.679459985	2521.291196	2 038379955	5 5688	251.2128209	9 42.97		
Load Season 2 **	238.8847666	7.723756888				54.06629822			10.48224		295.7095494			113.6495656		Total Load	6681.67693
Wetland Function Value (Both	230.0047000	1.123130000	070.0947098	0.331090921	0	34.00023022	0.551097	0	10.40224		293.7093494	0.551090921	3.3102	113.0493030	23.723	TOTAL LUAU	0001.07093
Seasons)	-534.0262177	-18.13679014	-1643.997814	-0.827092525	-1.060771217	-192.5489959	0.00700		26.56987	0.070450005	2817.000745	2.590076876	8.879	364.8623866	66.693		
																Final Load	1001 00000
Net Yield	133.5065544	4.534197535	410.9994534	0.206773131	4.243084869	449.2809904	0.206773	0	24.26801	0.631243112	2632.701843	2.390256563	8.114	330.208680	1 60.608	% Net	4061.89968
WATERSHED FUNCTION																Removal	39.2
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692	364.4	7221.2	0.5	4.4	687	87.1	0.2	288.6	643.7	52577.2	77.9	8211.8	3881.1	1 340.7 75077.	7	
Volume = 515089	4747.635956										360718.7936			26627.23975			
Concentration	1,2	1.2				1.2			6.75				6.75	1.875	3.75		
Wetland Function Factor	-0.8	3.0-				-0.3				1					1 1	1	
Load	7027.621657	3700.672445				6976.844044				9077.037466	853118.8368		105828	42359.62605		Total Load	1111154.33
Wetland Function Value	-5622.097325	-2960.537956				-2093.053213					853118.8368			42359.62605		. Jun Lodd	
Net Yield	1405.524331	740.1344889						1.6248836			799723.9424			38418.16617		Final Load	974041.779
WATERSHED FUNCTION	1403.024031	740.1344003	14007.012	1.010002200	33.74743304	4000.7 3000	170.3032	1.0240030	3420.171	0423.320473	133123.3424	1019.303433	37400	30410.10011	3031	% Net Removal	12.3
Scenario 5 - Moderate High																	12.3
Flow (existing conditions)											1						
290 and below	496.1	80.3	3345	0.5	2.2	592.2	1.6		82.8	224.8	11450.7	6	72.4	836.7	7 101.8 17293.	3	
																9	
Volume = 45305	1299.683143	210.3699988							216.9195		29998.55224			2191.987273			
Concentration	1.2	1.2				1.2					15	9.75	6.75	1.875	3.75	1	
Wetland Function Factor	-0.8							-0.2	1		1	1	1	ļ .	1 1		
Load	1923.837777	311.3972455							547.2789		113916.4113			3879.55689		Total Load	138147.576
Wetland Function Value	-1539.070222	-249.1177964				-688.9518635			547.2789		113916.4113			3879.55689			
Net Yield	384.7675554	62.2794491							515.1697		109475.9176			3555.091044		Final Load	120880.034
							1	1		1	1	1	1	1		% Net	
WATERSHED FUNCTION																	

Table C1. Expected Watershed Functions for Nitrogen - New Madrid Floodway.

New Madrid Floodway - Hi	gh Retention Sc	enario - Nitrogen															
Contour Range	Cypress/Tupelo 16	Scrub/shrub marsh 19	BI H 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Sovheans 38	Sovbeans/com 39	Com 40	Herb Veg 41	Pasture I C Tota		
Scenario 1 - Existing	Cypress/Tupelo To	OCIUD/SIII UD III ai SII 13	DEIT 42	Tupanan 40	ICIVEI 43	Open water 24	IVIGISII 23	Caridbar 51	Cotton so	Cotton/soybeans 57	Soybeans 30	ooybeans/com 55	COIII 40	Tielb. Veg. 4	I asture LC rota		
Conditions (No Flood)																	
275 ft	6.7	0	42	0.1	0	0.9	0	0	0.8	C	18	0	0.1	1 2.	9 1.7 73.	1	
Volume = 388	35.5622435	0	222.9274966	0.530779754	. 0	4.777017784	0	0	4.246238	C	95.54035568	0	0.5308				
Concentration/Export Coefficient	1.5	1.5	1.5	1.5		1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87			
Wetland Function Factor	-0.9	-0.9				-0.9		-0.9	0.2				0.2	2 0.	2 0.2		
Load	65.80064134	0	412.4816323	0.982099124	0	8.83889212	0	0	10.04217	C	286.0468424	0	1.2553	30.6814308	6 19.276	Total Load	835.404630
Wetland Function Value	-59.22057721	0		-0.883889212	. 0	-7.955002908	0	0	2.008435	C	57.20936848	0	0.2511	6.13628617	2 3.8551		
Net Yield	6.580064134	0	41.24816323	0.098209912	. 0	0.883889212	0	0	1.851299	C	53.67381163	0	0.2314	5.5666686	8 3.5212	Final Load	113.654733
WATERSHED FUNCTION																% Net Removal	86.4
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	. 0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 9.9 2370.	8	
280 ft	43.3	1.4		0.1		9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224			
Volume Season 2 = 1098	161.3828921	5.217922607		0.262900267	3.111903133	36.52545825			7.081466		199.7718941	0.372708758		319.900224			
Concentration/Export Coefficient	101.3020921	3.217922007	391.0013071	0.372706730		30.32343023	0.372708	0	7.001400		199.77 10941	0.372700730	2.230	70.7700040	7 10.020		
Season 1 Concentration/Export Coefficient	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Season 2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0						0 0		
Wetland Function Factor	-0.9	-0.9				-0.9				0.2	0.2	0.2	0.2	2 0.	2 0.2		
Load Season 1 *	895.0977664	56.53249051		0.523448986					34.32183	46 84811535	12407.91769	17.29776567				1	
Load Season 2 **	238.8847666	7.723756888				54.06629822			10.48224		295.7095494			113.649565		Total Load	18669.9784
Wetland Function Value (Both	230.004/000	1.123130000	070.0347099	0.001090921	U	J4.00023022	0.00109/	- 0	10.40224		233.7033494	0.551050921	3.3102	113.048300	U 23.123	TOTAL LUMO	10009.9764
Seasons)	-1020.58428	-57.83062266	-2558.423296	-0.967631316	-5.182144963	-853.30545	-1 /2074		8.960815	0 200022274	2540.725448	3 560003540	5 5 4 6	149.716243	2 16 611		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag	-1020.30420	-57.55002200	2550.425250	-0.307631310	-5.102144365	-033.30343	-1.40074		0.300013	3.303023071	2540.725440	3.309092310	3.340.	143.710243	2 10.011		
land covers																	
Net Yield	113.3982533	6.42562474	284.2692551	0.107514591	0.575793885	94.81171667	0.159859	0	8.206783	8.689139389	2377.734685	3.307603066	5.0927	135.602835	8 15.1	Final Load	3053.482249
WATERSHED FUNCTION																% Net Removal	83.64
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1		0.1		121.9			2.6								
280 ft	43.3	1.4				9.8										6	
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345		836.2339362			125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	C	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Concentration/Export Coefficient																	
Season 2	1.2	1.2		1.2	1.2	1.2				C	0	0) ()	0 0		
Wetland Function Factor	-0.9																
Load Season 1 *	428.6480055	14.94723079		0.482168735		587.7636881			16.08763		2521.291196			251.212820			
Load Season 2 **	238.8847666	7.723756888	876.0947099	0.551696921	0	54.06629822	0.551697	0	10.48224	0	295.7095494	0.551696921	3.3102	113.649565	6 23.723	Total Load	6681.67693
Wetland Function Value (Both																	
Seasons)	-600.7794949	-20.40388891		-0.93047909					5.313974		563.4001491	0.518015375		72.9724773			
Net Yield	66.75327721	2.267098768	205.4997267	0.103386566	0.530385609	64.18299863	0.103387	0	4.853602	0.126248622	526.5403687	0.478051313	1.6228	66.0417360	2 12.122	Final Load % Net	951.224631
WATERSHED FUNCTION																Removal	85.70
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692	364.4				687										7	
Volume = 515089	4747.635956	2500.055697		3.4303728	30.18728064	4713.332228					360718.7936			26627.2397			
Concentration	1.2	1.2				1.2				9.75						1	
Wetland Function Factor	-0.9	-0.9				-0.9											
Load	7027.621657	3700.672445									853118.8368			42359.6260		Total Load	1111154.33
Wetland Function Value	-6324.859491	-3330.6052				-6279.159639		-1.8279941			170623.7674			8471.92521			
Net Yield	702.7621657	370.0672445	7333.505998	0.507776131	4.468429955	697.6844044	88.4546	0.2031105	685.2343	1684.665295	159944.7885	203.8766918	19498	7683.63323	4 726.21	Final Load % Net	199623.657
WATERSHED FUNCTION																Removal	82.0
Scenario 5 - Moderate High														1	1 1		
Flow (existing conditions)	40														7 404 6 176		
290 and below	496.1	80.3		0.5		592.2										3	
Volume = 45305	1299.683143	210.3699988							216.9195		29998.55224			2191.98727		1	
Concentration	1.2	1.2				1.2											
Wetland Function Factor	-0.9	-0.9				-0.9											
Load	1923.837777	311.3972455		1.938961678					547.2789							Total Load	138147.576
Wetland Function Value	-1731.453999	-280.257521		-1.74506551	-7.678288246				109.4558		22783.28227			775.911378			
Net Yield	192.3837777	31.13972455	1297.165363	0.193896168	0.853143138	229.6506212	0.620468	0	103.0339	334.3205827	21895.18353	8.923147225	90.092	711.018208	8 101.96	Final Load	24996.5367
																% Net	
NATERSHED FUNCTION																	81.9

Table C2. High Watershed Functions for Nitrogen - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario A - Nitroger	1														
•		Ĭ.															
Contour Range Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC To	al	
Conditions (No Flood)			42	0.1	1 0	0.9					18	0		2.9	9 1.7 7		
275 ft	6.7	0								C						5.1	
Volume = 388	35.5622435	0							4.246238		95.54035568		0.5308				
Concentration/Export Coefficient	1.5	1.5		1.5						9.75							
Wetland Function Factor	-0.1	-0.1		-0.1		-0.1				1		1			1 1		
Load	65.80064134	0							10.04217		286.0468424			30.68143086		Total Load	835.404630
Wetland Function Value	-6.580064134	0							10.04217		286.0468424			30.68143086			
Net Yield	59.22057721	0	371.2334691	0.883889212	2 0	7.955002908	3 0	0	9.256494	C	268.3690582	0	1.1571	27.8333434	4 17.606	Final Load	763.5149745
WATERSHED FUNCTION																% Net Removal	8.61
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	3 0.2	. 0	5.2	6.5	1500.4	2.4	3.7	113.1	1 9.9 237	1.8	
280 ft	43.3	1.4				9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.9602244		+.0	
Volume Season 2 = 1098	161.3828921	5.217922607							7.081466		199.7718941			76.77800407			
	101.3020921	3.217322007	391.8013071	0.372706730	, 0	30.32343023	0.372708	0	7.001400		199.7710941	0.372700730	2.2303	70.7700040	10.020		
Concentration/Export Coefficient Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.875	5 3.75		
Concentration/Export Coefficient																	
Season 2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0) n	0	0		0 0		
Wetland Function Factor	-0.1	-0.1								1	1	1	1	1	1 1		
Load Season 1 *	895.0977664	56.53249051							34.32183	46.84811535	12407.91769	17.29776567	24.421	634.9316503			
Load Season 2 **	238.8847666	7.723756888		0.551696921		54.06629822			10.48224		295.7095494			113.6495656		Total Load	18669.97843
Wetland Function Value (Both	200.0011000	7.720700000	010.0041000	0.001000021		O 1.000EGOEE	0.001001		10.10221		200.7000101	0.001000021	0.0102	110.010000	20.720	TOTAL EDUC	10000.07010
Seasons)	-113.3982533	-6.42562474	-284.2692551	-0.107514591	-0.575793885	-94.81171667	-0.15986		44.80407	46 84811535	12703.62724	17 84946250	27 731	748.5812159	9 83 057		
* Export Coefficients were	-110.0002000	-0.42302474	-204.2032331	-0.107314331	-0.575735005	-34.01171007	-0.10000		44.00407	40.04011330	12/05.02/24	17.04340233	21.131	740.301213	00.007		
reduced by 50% for upland and																	
ag land covers																	
** No Export for upland and ag																	
land covers	1020.58428	57.83062266	0550 400000	0.00700404	E 400444000	853.30545	4 400705		41.03391	40.4450000	11888.67342	40 50004500	05.404	678.014179	25 500	F	17266.40332
Net Yield	1020.58428	57.83062266	2558.423296	0.967631316	5.182144963	853.30545	1.438735	0	41.03391	43.44569694	11888.67342	16.53801533	25.464	6/8.0141/9	9 /5.502	Final Load % Net	17266.40332
WATERSHED FUNCTION																Removal	7.52
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48.3	3 7.7 84	0.4	
280 ft	43.3	1.4				9.8					53.6						
Volume Season 1 = 2190	231.6646835	8.07829605				317.6594479			6.775345		836.2339362			125.8650643			
Volume Season 2 = 1098	161.3828921	5,217922607		0.372708758		36.52545825			7.081466		199.7718941	0.372708758		76.77800407			
Concentration/Export Coefficient	101.0020021	O.E.ITOEEGOT	001.0010011	0.072700700	,	00.02010020	0.012100	-	7.001100		100.1110011	0.072700700	2.2000	70.77000101	10.020		
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.875	5 3.75		
Concentration/Export Coefficient	1.5	1.0	1.0	1.0	1.5	1.0	1.0	1.5	0.73	3.10	13	3.73	0.73	1.07	3.73		
Season 2	1.2	1.2	1.2	1.3	1.2	12	1.2	1.2									
Wetland Function Factor	-0.1	-0.1				-0.1				1	1	1	1		1 1		
		14.94723079									2521.291196						
Load Season 1 *	428.6480055 238.8847666	7.723756888	876.0947099						16.08763 10.48224		295.7095494			251.2128209			6681.676934
Load Season 2 **	230.004/000	1.123130000	876.0947099	0.551696921	0	54.00029022	0.551697	U	10.46224		295.7095494	0.551696921	3.3102	113.0493030	0 23.723		0001.070934
Wetland Function Value (Both	00 75007704	0.007000700	205 4007007	0.400000500	0.500005000	C4 40000000	0.40000		00 50007	0.070450005	2047 200745	0.500070070	0.070	204 0002000	00.000		
Seasons)	-66.75327721	-2.267098768 20.40388891		-0.103386566					26.56987		2817.000745			364.8623866		Final Load	6113.884199
Net Yield	600.7794949	20.40300091	1849.497541	0.93047909	4.773470478	577.6469877	0.930478	, ,	24.26801	0.031243112	2632.701843	2.390256563	0.114	330.208680	1 60.606	% Net	0113.004198
WATERSHED FUNCTION																% Net Removal	8.50
Scenario 4 - Extreme High Flow																	
(existing conditions)								ļ									
300 and below	692	364.4				687				643.7						7.7	
Volume = 515089	4747.635956	2500.055697	49542.81613	3.4303728	30.18728064	4713.332228	597.5709	1.3721491	1980.011	4416.261943	360718.7936	534.4520823	56339	26627.23975			
Concentration	1.2	1.2				1.2				9.75	15	9.75	6.75	1.875	5 3.75		
Wetland Function Factor	-0.1	-0.1			-0.1	-0.1	-0.1	-0.1	1	1	1	1	1		1 1		
Load	7027.621657	3700.672445				6976.844044					853118.8368			42359.62605			1111154.334
Wetland Function Value	-702.7621657	-370.0672445		-0.507776131		-697.6844044	-88.4546	-0.2031105	3719.26		853118.8368		105828	42359.62605	5 3977		
Net Yield	6324.859491	3330.6052	66001.55398	4.569985181	40.2158696	6279.159639	796.0914	1.8279941	3426.171	8423.326475	799723.9424	1019.383459	97488	38418.16617	7 3631	Final Load	1034908.904
																% Net	
WATERSHED FUNCTION																Removal	6.86
					1						1	-	-				
Scenario 5 - 2 year flood					1	_											
290 and below	496.1	80.3		0.5		592.2			82.8	224.8			72.4			3.3	
Volume = 45305	1299.683143	210.3699988		1.309900366	5.763561611				216.9195	588.9312046	29998.55224			2191.987273			
Concentration	1.2	1.2		1.2		1.2				9.75	15	9.75	6.75	1.875	5 3.75		
Wetland Function Factor	-0.1	-0.1								1	1	1	1		1 1		
Load	1923.837777	311.3972455							547.2789	1758.778631	113916.4113			3879.55689			138147.5767
Wetland Function Value	-192.3837777	-31.13972455	-1297.165363	-0.193896168				0	547.2789	1758.778631	113916.4113			3879.55689			
Net Yield	1731.453999	280.257521	11674.48826	1.74506551	7.678288246	2066.855591	5.58421	0	515.1697	1671.602913	109475.9176	44.61573612	450.46	3555.091044	4 509.79	Final Load	131990.7119
					1		1									% Net	
WATERSHED FUNCTION			1	I .	1		1	1	1	I .	1	1	1	1	1 1	Removal	4.46

Table C3. Low Watershed Functions for Nitrogen - New Madrid Floodway.

New Madrid Floodway - Lov														1			
Contour Range C	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing												1					
Conditions (No Flood)																	
275 ft	6.7	0				0.9			0.8	0	18						
Volume = 388	35.5622435								4.246238		95.54035568			15.3926128			
Concentration/Export Coefficient	1.5	1.5				1.5			6.75	9.75	15	9.75	6.75	1.87	3.75		
Wetland Function Factor	-0.1 65.80064134	-0.1	-0.1	-0.1		-0.1	-0.1		10.04047	1	1 000 040040	1	4.055	00.0044000	1 1	T	005 101000
Load		0				8.83889212			10.04217		286.0468424			30.6814308		Total Load	835.404630
Wetland Function Value	-6.580064134	0							10.04217		286.0468424			30.6814308			700 54 407 4
Net Yield	59.22057721	0	371.2334691	0.883889212	. 0	7.955002908	0	0	9.256494	0	268.3690582		1.157	27.833343	1 17.bUb	Final Load % Net	763.514974
WATERSHED FUNCTION																Removal	8.6
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 9.9 2370.8		
280 ft	43.3	1.4				9.8				0.0							
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224			
Volume Season 2 = 1098	161.3828921	5.217922607				36.52545825			7.081466		199.7718941						
Concentration/Export Coefficient																	
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	3.75		
Concentration/Export Coefficient																	
Season 2	1.2	1.2	1.2	1.2		1.2		1.2	0	0	C	0	() (0 0		
Wetland Function Factor	-0.1	-0.1				-0.1				1	1	1	1 1	· ·	1 1		
Load Season 1 *	895.0977664	56.53249051		0.523448986					41.42432		16962.00679			677.842497			
Load Season 2 **	238.8847666	7.723756888	876.0947099	0.551696921	0	54.06629822	0.551697	0	10.48224	0	295.7095494	0.551696921	3.3102	113.649565	5 23.723	Total Load	23304.2057
Wetland Function Value (Both	440 0000500	0.40500.474	004 0000554	0.407544504	0.575700005	0101171007	0.45000		E4 000E0	E0 0700 400	47057 7400	00 50445050	00.70	704 400000			
Seasons)	-113.3982533	-6.42562474	-284.2692551	-0.107514591	-0.575793885	-94.81171667	-0.15986	0	51.90656	59.6720466	17257.71634	22.58445259	32.785	791.492062	3 90.569		
* Export Coefficients were NOT reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	1020.58428	57.83062266	2558.423296	0.967631316	5.182144963	853.30545	1 438735	0	48.1364	56 26962819	16442.76252	21 27300533	30.517	720.925025	83.014	Final Load	21900.630
WATERSHED FUNCTION	1020.00120	07.00002200	2000.120200	0.007001010	0.102111000	555.55515	1.400700		40.1001	00.20002010	10442.70202	21.27000000	00.011	720.020020	00.014	% Net Removal	6.0
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1				121.9				0.1							
280 ft	43.3	1.4				9.8				0						5	
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345		836.2339362			125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient																	
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	3.75		
Concentration/Export Coefficient																	
Season 2	1.2	1.2		1.2		1.2		1.2	0			0) (0 0		
Wetland Function Factor	-0.1 428.6480055	-0.1 14.94723079		-0.1 0.482168735		-0.1 587.7636881	-0.1	-0.1	19.63887	1 0 0 7 0 7 5 4 0 0 5	3495.302921	0.000050705	0.700	000 500440	1 1		
Load Season 1 **	238.8847666	7.723756888		0.482168735		54.06629822			19.63887		295.7095494			269.538142			7685,4265
Wetland Function Value (Both	230.004/000	1.123130000	0/0.094/099	0.551696921	U	54.00029022	0.551697	0	10.46224	U	295.7095494	0.551696921	3.3102	2 113.049505	23.723		7000.4200.
Seasons)	-66.75327721	-2.267098768	-205,4997267	-0.103386566	-0.530385600	-64.18299863	-0 10330		30.12111	0.876751235	3791.01247	3 181050626	10 109	383.187708	72 536		
Net Yield	600.7794949	20.40388891	1849.497541			577.6469877			27.81925		3606.713568			348.53400		Final Load	7117.63378
Net Held	000.1134343	20.40300007	1043.437.541	0.33047303	4.775470470	377.0403077	0.000473	-	27.01323	0.020004002	3000.7 13300	2.302130313	3.5450	340.33400.	00.451	% Net	7117.03570
WATERSHED FUNCTION																Removal	7.3
Scenario 4 - Extreme High Flow																	
(existing conditions)																	
300 and below	692	364.4				687				643.7			8211.8				
Volume = 515089	4747.635956	2500.055697		3.4303728							360718.7936			26627.2397			
Concentration	1.2	1.2		1.2		1.2				9.75	15	9.75	6.75	1.87	3.75		
Wetland Function Factor	-0.1	-0.1				-0.1				1	1	1	1 1		1 1		
Load	7027.621657	3700.672445									853118.8368			42359.6260			1111154.33
Wetland Function Value	-702.7621657	-370.0672445				-697.6844044					853118.8368			42359.6260			400:
Net Yield	6324.859491	3330.6052	66001.55398	4.569985181	40.2158696	6279.159639	796.0914	1.8279941	3426.171	8423.326475	799723.9424	1019.383459	97488	38418.1661	7 3631	Final Load	1034908.90
WATERSHED FUNCTION																% Net Removal	6.8
Scenario 5 - 2 year flood											1		-	1		-	
290 and below	496.1	80.3	3345	0.5	2.2	592.2	1.6		82.8	224.8	11450.7	6	72.4	1 836.	7 101.8 17293.3	+	
Volume = 45305	1299.683143	210.3699988				1551.445994			216.9195		29998.55224			2191.98727		1	
Concentration	1.2	210.3099990	1.2	1.309900300		1.2		1.2		9.75						+ +	
Wetland Function Factor	-0.1	-0.1				-0.1				9./5	10	9.75	0.75	1.07	1 1	1	
	1923.837777	311.3972455							547.2789	1758 779631	113916.4113	46 94249014	478 5/	3879.55689	1 549.27	1	138147.576
	1923.03////										113916.4113					_	130141.370
Load Wetland Function Value	-102 3837777	-31 13Q794EE															
Wetland Function Value	-192.3837777 1731.453999	-31.13972455 280.257521							547.2789					3879.55689		Final Load	131000 744
	-192.3837777 1731.453999	-31.13972455 280.257521		-0.193896168 1.74506551		-229.6506212 2066.855591			515.1697		109475.9176			3879.55689		Final Load % Net	131990.711

Table C4. Low (no runoff reduction) Watershed Functions for Nitrogen - New Madrid Floodway.

New Madrid Floodway - Ex	pected Concent	trations (2X for Se	ason 2), Runoff Co	efficients, and Fur	nction Factors - Niti	ogen											
									_								
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood)											4.0						
275 ft	6.7	0								C						1	
Volume = 388	35.5622435								4.246238		95.54035568			15.3926128			
Concentration/Export Coefficient	1.5	1.5								9.75							
Wetland Function Factor	-0.8	-0.8								1	1		1		1 1		
Load	65.80064134	(10.04217		286.0468424					Total Load	835.404630
Wetland Function Value	-52.64051307	(10.04217		286.0468424		1.2553				
Net Yield	13.16012827	(82.49632646	0.196419825	0	6.187224484	0	0	9.256494	0	268.3690582	0	1.1571	27.833343	4 17.606	Final Load	426.262135
WATERSHED FUNCTION																% Net Removal	48.9
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	113.	1 9.9 2370.		
280 ft	43.3	10.6		0.1		9.8											
																9	
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	C	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Concentration/Export Coefficient	-					_		_									
Season 2	3	3	3	3	3	3	3	3	0		0	0	0	- '	0	1	
Wetland Function Factor	-0.8	-0.8				-0.3				1	1	1	1		1 1		
Load Season 1 *	895.0977664	56.53249051		0.523448986					34.32183		12407.91769			634.931650			
Load Season 2 **	597.2119165	19.30939222	2190.236775	1.379242301	0	135.1657455	1.379242	0	26.2056	0	739.2738736	1.379242301	8.2755	284.123914	1 59.307	Total Load	21107.92712
Wetland Function Value (Both																1	
Seasons)	-1193.847746	-60.67350618	-3325.467693	-1.52215303	-1.15158777	-308.7649842	-1.94091	0	60.52744	46.84811535	13147.19156	18.67700797	32.697	919.055564	4 118.64		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	298.4619366	15.16837655	831.3669232	0.380538258	4.606351079	720.4516298	0.485228	0	55.18494	43.44569694	12287.88132	17.28280617	29.932	831.441092	6 107.53	Final Load	15243.61751
WATERSHED FUNCTION																% Net Removal	27.78
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1				121.9			2.6								
280 ft	43.3	1.4				9.8										6	
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345		836.2339362			125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	8 0	36.52545825	0.372709	0	7.081466	C	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	1.5	1.5	1.5	1.5	5 1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Concentration/Export Coefficient																	
Season 2	3	3	3	3	3	3	3	3	0		0	0	0		0 0		
Wetland Function Factor	-0.8	-0.8	-0.8	-0.8	-0.2	-0.3	-0.8	-0.2	1	1	1	1	1		1 1		
Load Season 1 *	428.6480055								16.08763	0.679459985	2521.291196		5 5688	251.2128209			
Load Season 2 **	597.2119165	19.30939222				135.1657455			26.2056		739.2738736			284.123914		Total Load	9119.625626
Wetland Function Value (Both	337.2113103	19.500552222	2130.230773	1.373242301	-	155.1057455	1.573242		20.2000		755.2750750	1.373242301	0.2700	204.123314	1 33.307	Total Load	3113.023020
Seasons)	-820.6879376	-27.40529841	-2695,311466	-1.489128829	-1.060771217	-216.8788301	-1.48913		42.29323	0.070450005	3260.56507	3.417622257	13.844	535.33673	5 102.28		
																Final Load	5059.83666
Net Yield	205.1719844	6.851324602	673.8278664	0.372282207	4.243084869	506.0506036	0.372282	0	38.41903	0.631243112	3031.909735	3.135047406	12.583	483.635593	7 92.634	% Net	
WATERSHED FUNCTION																Removal	44.52
Scenario 4 - Extreme High Flow												1		1			
(existing conditions)			1					1			1						
300 and below	692					687							8211.8			7	
Volume = 515089	4747.635956	2500.055697									360718.7936			26627.2397			
Concentration	1.2					1.2				9.75	15	9.75	6.75	1.87	5 3.75		
Wetland Function Factor	-0.8	-0.8	-0.8	-0.8	-0.2	-0.3	-0.8	-0.2	1	1	1	1	1		1 1		
Load	7027.621657			5.077761313							853118.8368		105828	42359.6260	5 3977	Total Load	1111154.33
Wetland Function Value	-5622.097325	-2960.537956				-2093.053213					853118.8368			42359.6260			
Net Yield	1405.524331	740.1344889		1.015552263		4883.79083					799723.9424		97488	38418.1661	7 3631	Final Load	974041.779
WATERSHED FUNCTION																% Net Removal	12.3
Scenario 5 - Moderate High																	12.0
Flow (existing conditions)				1						1		1		1		1	
290 and below	496.1	80.3	3345	0.5	2.2	592.2	1.6	0	82.8	224.8	11450.7	6	72.4	836.	7 101.8 17293.	3	
Volume = 45305	1299.683143								216.9195		29998.55224			2191.98727		1	
																1	
Concentration	1.2	1.2				1.2							6.75	1.87		+ +	
Wetland Function Factor	-0.8	-0.8								1			1		1 1		
Load	1923.837777	311.3972455							547.2789		113916.4113					Total Load	138147.576
Wetland Function Value	-1539.070222	-249.1177964							547.2789		113916.4113			3879.55689		I	
Net Yield	384,7675554	62.2794491	2594.330725	0.387792336	6.825145107	1607.554348	1.240935	0	515.1697	1671.602913	109475.9176	44.61573612	450.46	3555.09104	4 509.79	Final Load	120880.034
Net field																	
WATERSHED FUNCTION																% Net	

Table C5. Expected (concentration doubled) Watershed Functions for Nitrogen - New Madrid Floodway.

non maana noodinay Ex				nction Factors - Pl	nosphorus												
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood)			40														
275 ft Volume = 388	6.7 35.5622435					0.9 4.777017784			0.8 4.246238	S C	95.54035568			1 2.		1	
Concentration/Export Coefficient	35.5622435					0.21											
Wetland Function Factor	-0.4					-0.21									1 1 1		
Load	9.212089788			0.137493877					1.456087		32.76195794			4.10468544		Total Load	109.2041139
		0														TOTAL LOAG	109.2041138
Wetland Function Value	-3.684835915 5.527253873			-0.068746939 0.068746939					1.456087		32.76195794			4.10468544		Final Load	78.87296452
Net Yield	5.527253873	0	34.64845/11	0.068746939	0	0.989955917	0	0	1.346092	:	30.28706814	0	0.1683	3.70595320	1 2.1312	% Net	78.87296452
WATERSHED FUNCTION																Removal	27.77
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 9.9 2370.	0	
280 ft	43.3			0.1		9.8											
Volume Season 1 = 6707	483.7594905								14.71081		4244.635903			319.960224		ы	
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.202900207		36.52545825			7.081466		199.7718941			319.900224			
Concentration/Export Coefficient	101.3020921	3.217922007	391.0013071	0.372706730	0	30.32343023	0.372708	0	7.001400	,	199.7710941	0.372700730	2.2303	70.7700040	7 10.020		
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient			.						_					,			
Season 2	0.15	0.15		0.15		0.15		0.15	0	· C	y C	0	1 0	,	0 0		
Wetland Function Factor	-0.4					-0.2				1	1	1	1 1		1 1	1	
Load Season 1 *	125.3136873	7.914548671							4.968151		1433.502536			85.1714909			
Load Season 2 **	29.86059583	0.965469611	109.5118387	0.068962115	0	6.758287277	0.068962	0	1.31028	S C	36.96369368	0.068962115	0.4138	14.206195	7 2.9654	Total Load	2279.84238
Wetland Function Value (Both								1						1			
Seasons)	-62.06971325	-3.552007313	-153.9342146	-0.071122487	-0.080611144	-26.38508177	-0.08621	0	6.278431	5.421023274	1470.46623	2.070570709	3.9488	99.3776866	8 10.301		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	93.10456987	5.328010969	230.9013219	0.071122487	0.725500295	105.5403271	0.120317	0	5.766332	4 944684697	1356.816261	1 887705638	3 6363	89.6687758	6 0 2785	Final Load	1907.798764
WATERSHED FUNCTION	33.10430307	3.320010303	230.3013213	0.071122407	0.723300233	103.3403271	0.123317		3.700332	4.344004037	1330.010201	1.007733030	3.050.	09.0007730	0 3.2703	% Net	16.32
Scenario 3 - Avoid and																Reiliovai	10.32
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1		2.6	0.1	320.9	0.3	0.9	48.	3 7.7 840.	4	
280 ft	43.3					9.8											
Volume Season 1 = 2190	231.6646835								6.775345		836.2339362			125.865064		0	
Volume Season 2 = 1098	161.3828921	5.217922607							7.081466		199.7718941			3 76.7780040			
Concentration/Export Coefficient	101.3020921	3.217922007	391.0013071	0.372706730	0	30.32343023	0.372708	0	7.001400	,	199.7710941	0.372700730	2.2303	70.7700040	7 10.020		
Season 1	0.04	0.21	0.21	0.21	0.21	0.21	0.04	0.21	1.1	0.5		0.5			1 0.04		
Concentration/Export Coefficient	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	1 0.	1 0.04		
			.		.				_						_		
Season 2	0.15					0.15		0.15	0	0	0	0)	0 0		
Wetland Function Factor	-0.4										1		1		1 1		
Load Season 1 *	60.01072077	2.09261231							2.333815		288.0466524			33.5816003			
Load Season 2 **	29.86059583	0.965469611	109.5118387	0.068962115	0	6.758287277	0.068962	0	1.31028	0	36.96369368	0.068962115	0.4138	14.206195	7 2.9654	Total Load	843.8170599
Wetland Function Value (Both																	
Seasons)	-35.94852664	-1.223232769		-0.068232869					3.644095		325.0103461			47.7877960			
Net Yield	53.92278996	1.834849153	164.7349181	0.068232869	0.668285867	71.23616289	0.081879	0	3.337558	0.070870761	299.6520642	0.274678185	1.1195	43.1067515	2 7.4092	Final Load % Net	647.5177008
WATERSHED FUNCTION																Removal	23.26
Scenario 4 - Extreme High Flow			1							1	1	1		1			
(existing conditions)		1						1						1	1 1	1	
300 and below	692			0.5	4.4	687	87.1	0.2	288.6				8211.8	3881.	1 340.7 75077.	7	
Volume = 515089	4747.635956	2500.055697	49542.81613	3.4303728	30.18728064	4713.332228	597.5709	1.3721491	1980.011	4416.261943	360718.7936	534.4520823	56339	26627.2397			
Concentration	0.15	0.15		0.15		0.15	0.15	0.15	1.1				1.1				
Wetland Function Factor	-0.4	-0.4	-0.4	-0.5	-0.1	-0.2	-0.4	-0.2		1	1	1	1		1 1		
Load	878.4527071									947.3914342	90149.41015	114.6524666	14080	5083.89297	5 438.01	Total Load	122805.3014
Wetland Function Value	-351.3810828	-185.0336222									90149.41015			5083.89297			
Net Yield	527.0716243	277.5504333				697.6844044	66.34095	0.2031105	458.2005		83475.04834			4591.21048		Final Load	110001.5866
WATERSHED FUNCTION																% Net Removal	10.43
Scenario 5 - Moderate High																	70
Flow (existing conditions)		1						1						1	1 1	1	
290 and below	496.1	80.3	3345	0.5	2.2	592.2	1.6	0	82.8	224.8	11450.7	6	72.4	1 836.	7 101.8 17293.	3	
Volume = 45305	1299.683143								216.9195		29998.55224			7 2191.98727			
Concentration	0.15	0.15				0.15		0.15									
Wetland Function Factor																_	
	-0.4					-0.2									1 1	Total I av. 1	40570 4004
Load	240.4797221	38.92465569		0.24237021					72.98293		10648.12524					Total Load	13576.4664
Wetland Function Value	-96.19188886	-15.56986228							72.98293		10648.12524						40400 0:
Net Yield	144.2878333	23.35479341	972.874022	0.121185105	0.959786031	229.6506212	U.465351	- 0	72.98293	143.5609617	10093.06353	3.831698266	63.816	398.885327	1 46.06	Final Load	12193.91389
		1	1	I	1		1	1	l .	1	1	1	1	1	1 1	% Net	
WATERSHED FUNCTION																Removal	10.18

Table C6. Expected Watershed Functions for Phosphorus - New Madrid Floodway.

New Madrid Floodway - Hi	ah Retention Sc	enario - Phosphor	rus														
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood)	0.7		42	0.1	0	0.9	0	0	0.0	C	18	0			9 1.7 73.		
275 ft Volume = 388	6.7 35.5622435			0.530779754					0.8 4.246238		95.54035568			1 2.		1	
Concentration/Export Coefficient	0.21				0.21	0.21											
Wetland Function Factor	-0.9			-0.5		-0.9											
Load	9.212089788			0.137493877					1.456087		32.76195794					Total Load	109.204113
																TOTAL LOAG	109.2041138
Wetland Function Value	-8.290880809 0.921208979			-0.12374449 0.013749388					0.291217		6.552391587		0.0364			Final Load	440044550
Net Yield	0.921208979	0	5.774742852	0.013749388	0	0.12374449	0	0	0.269218		6.057413629	U	0.0337	0.7411906	4 0.4262	% Net	14.36115584
WATERSHED FUNCTION																Removal	86.85
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 9.9 2370.	R	
280 ft	43.3			0.1		9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0.111303133	36.52545825			7.081466		199.7718941	0.372708758		3 76.7780040			
Concentration/Export Coefficient	101.3020321	3.217322007	331.0013071	0.572700730		30.32343023	0.372703	-	7.001400		133.77 10341	0.372700730	2.2000	70.7700040	10.020		
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient Season 2	0.15	0.15	0.15	0.15	0.15	0.45	0.15	0.15									
						0.15					0	0	1 (,	0 00	+	
Wetland Function Factor	-0.9			-0.9					0.2 4.968151					0. 85.1714909		+	
Load Season 1 *	125.3136873	7.914548671									1433.502536					Total I av. 1	0070 0 100
Load Season 2 **	29.86059583	0.965469611	109.5118387	0.068962115	0	6.758287277	U.U68962	0	1.31028		36.96369368	0.068962115	0.4138	14.206195	/ 2.9654	Total Load	2279.84238
Wetland Function Value (Both Seasons)	-139.6568548	-7.992016454	-346.3519828	-0.128020476	-0.725500295	-118.732868	0,000-		1.255686	4 00 100 1	294.093246	0.4		19.8755373	4 0 0004		
* Export Coefficients were reduced by 50% for upland and ag land covers	-139.6568548	-7.992016454	-346.3519828	-0.128020476	-0.725500295	-118./32868	-0.19398	0	1.255686	1.084204655	294.093246	0.414114142	0.7898	19.8755373	4 2.0601		
** No Export for upland and ag land covers																	
Net Yield	15.51742831	0.888001828	38.48355365	0.014224497	0.080611144	13.19254089	0.021553	0	1.153266	0.988936939	271.3632521	0.377559128	0.7273	17.9337551	7 1.8557	Final Load	362.5976321
WATERSHED FUNCTION																% Net Removal	84.10
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	9 48.	3 7.7 840.	4	
280 ft	43.3			0.1	0	9.8							0.6	3 20.	6 4.3 294.	6	
Volume Season 1 = 2190	231.6646835	8.07829605	637.1430271	0.260590195	2.866492147	317.6594479	0.26059	0	6.775345	0.260590195	836.2339362	0.781770585	2.3453	125.865064	3 20.065		
Volume Season 2 = 1098	161.3828921	5.217922607							7.081466		199.7718941			3 76.7780040			
Concentration/Export Coefficient																	
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient	0.21	0.2.	0.21	U.L.	0.21	0.21	0.21	0.21		0.0		0.0		0.	. 0.01		
	0.45	0.45	0.45	0.40	0.15	0.15	0.45	0.15									
Season 2	0.15										0) ()	0		
Wetland Function Factor	-0.9																
Load Season 1 *	60.01072077	2.09261231							2.333815		288.0466524					T	040.0470500
Load Season 2 **	29.86059583	0.965469611	109.5118387	0.068962115	U	6.758287277	0.068962	0	1.31028		36.96369368	0.068962115	0.4138	14.206195	7 2.9654	Total Load	843.8170599
Wetland Function Value (Both								_							_		
Seasons)	-80.88418494	-2.752273729		-0.122819164					0.728819		65.00206922			9.55755921			
Net Yield	8.98713166	0.305808192	27.45581968	0.013646574	0.074253985	8.904520361	0.013647	0	0.667512	0.014174152	59.93041283	0.054935637	0.2239	8.62135030	3 1.4818	Final Load % Net	116.7489435
WATERSHED FUNCTION																Removal	86.16
Scenario 4 - Extreme High Flow														1			
(existing conditions)							1	1	1	-		-					
300 and below	692					687										/	
Volume = 515089	4747.635956	2500.055697		3.4303728		4713.332228					360718.7936						
Concentration	0.15	0.15		0.15		0.15				0.5						1	
Wetland Function Factor	-0.9					-0.9											
Load	878.4527071										90149.41015			5083.89297		Total Load	122805.3014
Wetland Function Value	-790.6074364	-416.32565				-784.8949549					18029.88203			1016.77859			
Net Yield	87.84527071	46.25840556	916.6882498	0.063472016	0.558553744	87.21055054	11.05683	0.0253888	91.6401	173.1355121	16695.00967	20.95270528	2607.5	918.242097	8 78.953	Final Load % Net	21735.1591
WATERSHED FUNCTION																Removal	82.3
Scenario 5 - Moderate High Flow (existing conditions)																	
290 and below	496.1	80.3	3345	0.5	2.2	592.2	1.6	0	82.8	224.8	11450.7	6	72.4	1 836.	7 101.8 17293.	3	
Volume = 45305	1299.683143								216.9195		29998.55224			7 2191.98727		+	
Concentration	0.15	0.15				0.15											
																_	
Wetland Function Factor	-0.9			-0.9		-0.9										Tetal	40500 407
Load	240.4797221	38.92465569		0.24237021					76.99658		10648.12524					Total Load	13580.4801
Wetland Function Value	-216.4317499	-35.03219012							15.39932		2129.625048			87.8887116			0000 11
Net Yield	24.04797221	3.892465569	162.1456703	0.024237021	0.106642892	28.70632765	0.077558	0	14.59659	28.71219234	2018.612706	0.766339653	12.763	79.7770654	3 9.212	Final Load	2383.44093
		1			1				1	1		1	1	1		% Net	
WATERSHED FUNCTION																Removal	82.4

Table C7. High Watershed Functions for Phosphorus - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario A - Phosph	orus														
Contour Range	Cupross/Tupolo 16	Scrub/shrub marsh 19	DI II 42	Riparian 43	River 45	Onen water 24	March 20	Condhor 21	Cotton 26	Cotton/soybeans 37	Caubaana 20	Saubanna/aam 20	Com 40	Horb Vog 4:	I Booturo I C Toto		
Scenario 1 - Existing	Cypress/Tupelo 16	SCIUD/SIIIUD IIIaiSII 19	DLIT 42	Nipaliali 43	KIVEI 43	Open water 24	IVIAISII 29	Sariubai ST	COROTI 30	COROT/SOYDEATS 37	Suybeans 36	Suybeans/com 39	COIII 40	neib. veg. 4	rasiule LC Tota		
Conditions (No Flood)																	
275 ft	6.7		42	0.1	0	0.9		0	0.8		18	3 0	0.	1 2	9 1.7 73.	1	
Volume = 388	35.5622435			0.530779754					4.246238		95.54035568			15.3926128			
Concentration/Export Coefficient	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.	1 0	1 0.04		
Wetland Function Factor	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1	1	1	1		1	1 1		
Load	9.212089788	(57.74742852	0.137493877	0	1.237444897	C	0	1.456087	(32.76195794	1 (0.182	2 4.10468544	5 2.3649	Total Load	109.2041139
Wetland Function Value	-0.921208979	(-5.774742852	-0.013749388	0	-0.12374449	C	0	1.456087	' (32.76195794	1 (0.182	2 4.10468544	5 2.3649		
Net Yield	8.290880809	(51.97268567	0.12374449	0	1.113700407	C	0	1.346092	! (30.28706814	1 (0.168	3.70595320	1 2.1312	Final Load	99.13956205
WATERSHED FUNCTION																% Net Removal	9.22
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	1 2.4	1 3.	7 113.	1 9.9 2370.	8	
280 ft	43.3	1.4		0.1		9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			7 319.960224		0	
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758		36.52545825			7.081466		199.7718941			3 76.7780040			
Concentration/Export Coefficient	101.3020321	3.217322007	331.0013071	0.572700750	,	30.32343023	0.572703	-	7.001400	1	133.77 10341	0.372700730	2.200	70.7700040	7 10.020		
Season 1 Concentration/Export Coefficient	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.	1 0	1 0.04		
Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	_	,) .) 4		0 0		
Wetland Function Factor	-0.1	-0.1				-0.1					1	1	í ·	1	1 1	1	
Load Season 1 *	125.3136873	7.914548671		0.073282858					4.968151	5 42102327/	1433.502536	2.001608594	1 3.53	5 85 1714909		1	
Load Season 2 **	29.86059583	0.965469611		0.068962115		6.758287277			1.31028		36.96369368			3 14.206195		Total Load	2279.84238
Wetland Function Value (Both	29.00009563	0.900409011	108.0116367	0.000902113	, ,	0.130201211	0.000902	- 0	1.31020		30.80308308	0.000902115	0.413	14.200193	1 2.3004	TOTAL LUAG	2213.04230
Seasons)	-15.51742831	-0.888001828	-38.48355365	-0.014224497	-0.080611144	-13.19254089	-0.02155	_	6.278431	5 42402227	1470.46623	2.070570700	3 040	99.3776866	8 10 301		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag	-13.31742031	-0.000001020	30.4033303	-0.014224431	-0.500011144	-13.13234003	-0.02130		0.270431	3.421023274	1470.40020	2.070370703	3.340	33.3770000	0 10.301		
land covers																	
Net Yield	139.6568548	7.992016454	346.3519828	0.128020476	0.725500295	118.732868	0.193975	0	5.766332	4.944684697	1356.816261	1.887795638	3.636	89.6687758	6 9.2785	Final Load	2085.779813
WATERSHED FUNCTION																% Net Removal	8.51
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	9 48.	3 7.7 840.	4	
280 ft	43.3	1.4		0.1	0	9.8							0.0	6 20.	6 4.3 294.	6	
Volume Season 1 = 2190	231.6646835	8.07829605	637.1430271	0.260590195	2.866492147	317.6594479	0.26059	0	6.775345	0.260590195	836.2339362	0.781770585	2.345	3 125.865064	3 20.065		
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466		199.7718941	0.372708758	3 2.236	3 76.7780040	7 16.026		
Concentration/Export Coefficient																	
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.	1 0.	1 0.04		
Concentration/Export Coefficient																	
Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0) (0) () (ol	0 0		
Wetland Function Factor	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1	1	1	1		1	1 1		
Load Season 1 *	60.01072077	2.09261231							2.333815	0.077621123	288.0466524	0.232863369	0.8079	33.5816003	7 5.2601		
Load Season 2 **	29.86059583	0.965469611		0.068962115		6.758287277			1.31028		36.96369368					Total Load	843.8170599
Wetland Function Value (Both																	
Seasons)	-8.98713166	-0.305808192	-27.45581968	-0.013646574	-0.074253985	-8.904520361	-0.01365	0	3.644095	0.077621123	325.0103461	0.301825484	1.2210	47.7877960	7 8.2255		
Net Yield	80.88418494	2.752273729	247.1023771	0.122819164	0.668285867	80.14068325	0.122819	0	3.337558	0.070870761	299.6520642	0.274678185	1.119	43.1067515	2 7.4092	Final Load	766.7640258
WATERSHED FUNCTION																% Net Removal	9.13
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692	364.4	7221.2	0.5	4.4	687	87.1	0.2	288.6	643.7	52577.2	77.0	8211.	3881	1 340.7 75077.	7	
Volume = 515089	4747.635956	2500.055697		3.4303728							360718.7936			26627.2397			
Concentration	0.15	2500.055097		0.15		0.15										1	
Wetland Function Factor	-0.1	-0.1				-0.1				0.0	1.1	1 1	1	1	1 1	1	
Load	878.4527071	462.5840556								947 301434	90149.41015	114.6524666	1/100/	5083.89297	5 438.01	Total Load	122805.3014
Wetland Function Value	-87.84527071	-46.25840556									90149.41015			0 5083.89297		TOTAL LUAD	122000.3012
Net Yield	790.6074364	416.32565									83475.04834			3 4591.21048		Final Load	113274.622
WATERSHED FUNCTION	790.0074304	410.32300	0230.194240	0.371246146	5.0209637	764.6545545	99.51140	0.2204993	436.2003	803.0773003	63473.04634	104.7033204	1303	4391.21040	9 394.70	% Net Removal	7.70
Scenario 5 - Moderate High																	
Flow (existing conditions)																	
290 and below	496.1	80.3		0.5		592.2										3	
Volume = 45305	1299.683143	210.3699988	8763.233449	1.309900366	5.763561611	1551.445994	4.191681	0	216.9195	588.9312046	29998.55224	15.71880439	189.67	7 2191.98727	3 266.7		
Concentration	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.1	0.5	1.1	0.5	1.	1 0.	1 0.04		
Wetland Function Factor	-0.1	-0.1				-0.1									1 1		
Load	240.4797221	38.92465569		0.24237021					72.98293		10648.12524					Total Load	13576.4664
Wetland Function Value	-24.04797221	-3.892465569		-0.024237021					72.98293		10648.12524						
Net Yield	216.4317499	35.03219012							72.98293		10093.06353			398.885327		Final Load	12793.2081
WATERSHED FUNCTION	210.1017400	00.00210012	1-100.011000	0.210100100	0.0007.00001		2.000020		. 2.00230	1-10.0000011	. 5000.00000	0.007000200		300.000021	10.00	% Net Removal	5.7
		1	1	I .			1	1	1	1	1	1	1	1	1 1		

Table C8. Low Watershed Functions for Phosphorus - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario B - Phosph	orus														
Contour Range	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Sovbeans 38	Sovbeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing	оургова гарою то	COI GOI GOI II GIOI I TO	DETT 12	Tupunun 10	14101-10	Open water 21	IVIGION 20	Curidour o r	OOMOII GO	Collor Goyboario Gr	CO) DOGING GO	CO DCC III CO III CO	00111 10	rioib. rog. vi	r doldro Eo rola		
Conditions (No Flood)																	
275 ft	6.7	0				0.9			0.8	C						1	
Volume = 388 Concentration/Export Coefficient	35.5622435 0.21	0.21			0.21	4.777017784 0.21			4.246238	0.5	95.54035568			15.39261286			
Wetland Function Factor	-0.1	-0.1				-0.1				0.5		0.5	1.1	0.			
Load	9.212089788								1.456087		32.76195794	Ö	0.182	4.104685445		Total Load	109.204113
Wetland Function Value	-0.921208979	0	-5.774742852						1.456087		32.76195794			4.104685445			
Net Yield	8.290880809	0	51.97268567	0.12374449	0	1.113700407	7 0	0	1.346092	C	30.28706814	0	0.1683	3.70595320	2.1312	Final Load	99.13956205
WATERSHED FUNCTION																% Net Removal	9.22
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8				170.8			5.2	6.5							
280 ft	43.3	1.4				9.8										6	
Volume Season 1 = 6707 Volume Season 2 = 1098	483.7594905 161.3828921	30.55323098 5.217922607				483.1936899 36.52545825			14.71081 7.081466		4244.635903			319.9602244 76.77800407			
Concentration/Export Coefficient	101.3020921	5.217922007	591.0015071	0.3/2/06/56	0	36.52545625	0.372709	0	7.061400		199.7718941	0.372706756	2.2303	76.7760040	16.026		
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.4	0.04		
Concentration/Export Coefficient																	
Season 2	0.15	0.15				0.15				C	0	0		(0		
Wetland Function Factor	-0.1	-0.1				-0.1				0.070000774			4.055	07.400000	1 1		
Load Season 1 * Load Season 2 **	125.3136873 29.86059583	7.914548671 0.965469611		0.073282858		125.1671216 6.758287277			6.125593 1.31028	6.078660774	1767.46907			87.46006948 14.206195		Total Load	2619.059087
Wetland Function Value (Both	29.00009563	0.303403011	108.5116367	0.000902113		0.130201211	0.000902	- 0	1.31028		30.80308300	0.000902115	0.4130	14.200195	2.3004	TOTAL LUIG	2019.008087
Seasons)	-15.51742831	-0.888001828	-38.48355365	-0.014224497	-0.080611144	-13.19254089	-0.02155	0	7.435873	6.078660774	1804.432764	2.313390709	4.7724	101.6662652	10.381		
* Export Coefficients were NOT reduced by 50% for upland and ag land covers ** No Export for upland and ag land covers																	
Net Yield	139.6568548	7.992016454	346.3519828	0.128020476	0.725500295	118.732868	0.193975	0	6.923774	5.602322197	1690.782795	2.130615638	4.4598	91.95735436	9.3586	Final Load	2424.99652
WATERSHED FUNCTION																% Net Removal	7.41
Scenario 3 - Avoid and																	
Minimize (2 seasons) 282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48.3	3 7.7 840.	4	
280 ft	43.3	1.4				9.8				0.1							
Volume Season 1 = 2190	231.6646835	8.07829605	637.1430271	0.260590195		317.6594479	0.26059	0	6.775345		836.2339362	0.781770585	2.3453	125.8650643	20.065		
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	С	199.7718941	0.372708758	2.2363	76.77800407	16.026		
Concentration/Export Coefficient Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	0.04		
Concentration/Export Coefficient Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15									
Wetland Function Factor	-0.1	-0.1				-0.13				1	1	1	1		1 1		
Load Season 1 *	60.01072077								2.912536	0.087738623	359.4741789	0.263215869	1.0082	34.55895087			
Load Season 2 **	29.86059583	0.965469611	109.5118387	0.068962115	0	6.758287277	0.068962		1.31028		36.96369368		0.4138	14.2061957	2.9654	Total Load	917.1037782
Wetland Function Value (Both																	
Seasons) Net Yield	-8.98713166 80.88418494	-0.305808192 2.752273729							4.222816 3.916279		396.4378726			48.7651465		Final Load	840.0507441
WATERSHED FUNCTION	00.00410494	2.752273729	247.1023771	0.122819104	0.000203007	80.14068323	0.122819	0	3.916279	0.000986261	3/1.0/9590/	0.303030663	1.3190	44.00410202	7.4715	% Net Removal	8.40
Scenario 4 - Extreme High Flow																	
(existing conditions)								ļ	005 -				004:	007:	040 7 75	_	
300 and below Volume = 515089	692 4747.635956	364.4 2500.055697				687 4713.332228				643.7	52577.2		8211.8 56339			/	
Concentration	4/4/.b3595b 0.15	2500.055697			30.18728064	4/13.332228			1980.011	4416.261943			56339				
Wetland Function Factor	-0.1	-0.1				-0.1				1				0.			
Load	878.4527071	462.5840556	9166.882498	0.634720164	5.585537444	872.1055054	110.5683	0.2538881	494.8365		90149.41015			5083.892975		Total Load	122805.3014
Wetland Function Value	-87.84527071	-46.25840556				-87.21055054				947.3914342	90149.41015	114.6524666	14080	5083.892975			
Net Yield	790.6074364	416.32565	8250.194248	0.571248148	5.0269837	784.8949549	99.51143	0.2284993	458.2005	865.6775603	83475.04834	104.7635264	13038	4591.210489	394.76	Final Load	113274.6227
WATERSHED FUNCTION																% Net Removal	7.76
Scenario 5 - Moderate High Flow (existing conditions)																	
290 and below	496.1	80.3	3345	0.5	2.2	592.2	2 1.6	0	82.8	224.8	11450.7	6	72.4	836.7	101.8 17293.	3	
Volume = 45305	1299.683143	210.3699988	8763.233449	1.309900366	5.763561611	1551.445994	4.191681	0	216.9195	588.9312046	29998.55224			2191.987273	3 266.7		
Concentration	0.15	0.15	0.15			0.15	0.15	0.15		0.5		0.5	1.1				
Wetland Function Factor	-0.1	-0.1								151 1570000		1 10051	1 07.0	100 11055		T	10570 1
Load Wetland Function Value	240.4797221 -24.04797221	38.92465569 -3.892465569				287.0632765 -28.70632765			72.98293 72.98293		10648.12524 10648.12524					Total Load	13576.4664
Net Yield	216.4317499	-3.892465569 35.03219012				-28.70632765 258.3569488			72.98293		10048.12524			398.885327		Final Load	12793.2081
																% Net Removal	5.7

Table C9. Low (no runoff reduction) Watershed Functions for Phosphorus - New Madrid Floodway.

		,	eason 2), Runoff Co														
Contour Range Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Conditions (No Flood)																	
75 ft	6.7	(42	0.1	0	0.9) (0	0.8		18		0.1	2.9	9 1.7 73.	1	
/olume = 388	35.5622435	C							4.246238		95.54035568			15.3926128		1	
Concentration/Export Coefficient	0.21	0.21		0.21		0.21											
Wetland Function Factor	-0.4	-0.4	-0.4	-0.5	-0.1	-0.2	-0.4	-0.2	1	1	1	1	1		1 1		
Load	9.212089788	(0	1.237444897	· C		1.456087	0	32.76195794	0	0.182	4.10468544	5 2.3649	Total Load	109.204113
Wetland Function Value	-3.684835915	(-23.09897141	-0.068746939	0	-0.247488979) C	0	1.456087	0	32.76195794	0	0.182	4.10468544	5 2.3649		
Net Yield	5.527253873	(34.64845711	0.068746939	0	0.989955917	' C	0	1.346092	2 0	30.28706814	0	0.1683	3.70595320	1 2.1312	Final Load	78.8729645
WATERSHED FUNCTION																% Net Removal	27.7
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	113.	1 9.9 2370.	8	
280 ft	43.3	1.4				9.8											
Volume Season 1 = 6707	483 7594905	30.55323098							14.71081		4244.635903		10.467	319.960224		1	
Volume Season 2 = 1098	161.3828921	5.217922607		0.372708758		36.52545825			7.081466		199.7718941	0.372708758		76.7780040			
Concentration/Export Coefficient	101.0020021	O.ETT OEECOT	001.0010011	0.072700700	,	00.02010020	0.072700		1.001100		100.7710071	0.072700700	2.2000	70.7700010	10.020		
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient											l -					1 1	
Season 2	0.42	0.42		0.42		0.42				0	0		1 0	1	0 0	+	
Wetland Function Factor	-0.4	-0.4				-0.2				1 1	1	1	1	05 474 45	1 1	+	
Load Season 1 *	125.3136873	7.914548671							4.968151		1433.502536			85.1714909		+	0045 50:
Load Season 2 **	83.60966831	2.703314911	306.6331485	0.193093922	2 0	18.92320438	0.193094	0	3.668785	0	103.4983423	0.193093922	1.1586	39.7773479	7 8.303	Total Load	2645.53468
Wetland Function Value (Both						l	1				l				.	1 1	
Seasons) * Export Coefficients were reduced by 50% for upland and	-83.56934224	-4.247145433	-232.7827385	-0.13318839	-0.080611144	-28.81806519	-0.13586	0	8.636935	5.421023274	1537.000879	2.194702516	4.6936	124.948838	9 15.638		
ag land covers *** No Export for upland and ag																	
land covers	105.05.1010.1	0.070740440	0404744077	0.40040000	0.70550005	445.0700000	0.000700		7.000000	4 0 4 4 0 0 4 0 0 7	4440.007444	4 00054 400	4.0000	440.000040	11000		0450 00500
Net Yield	125.3540134	6.370718149	349.1741077	0.13318839	0.725500295	115.2722608	0.203796	0	7.888986	4.944684697	1416.697444	1.999514264	4.3066	112.682812	9 14.082	Final Load % Net	2159.83598
WATERSHED FUNCTION																Removal	18.3
Scenario 3 - Avoid and Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48.	3 7.7 840.	4	
280 ft	43.3	1.4				9.8											
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345		836.2339362			125.865064		1	
Volume Season 2 = 1098	161.3828921	5.217922607		0.372708758					7.081466	0	199.7718941	0.372708758		76.7780040			
Concentration/Export Coefficient																	
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient																	
Season 2	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0		0	0			0 0		
Wetland Function Factor	-0.4	-0.4				-0.2				1	1	1	1		1 1		
Load Season 1 *	60.01072077	2.09261231							2.333815	0.077621123	288.0466524	0.232863369	0.8079	33.5816003	7 5.2601	_	
Load Season 2 **	83.60966831	2.703314911				18.92320438			3.668785		103.4983423			39.7773479		Total Load	1209.50936
Wetland Function Value (Both	00.00000001	2.700011011	000.0001100	0.100000022		10.02020100	0.10000		0.000700		100.1000120	0.100000022	1.1000	00.7770470	0.000	Total Load	1200.00000
Seasons)	-57 44815563	-1.918370888	-188.6718026	-0.130298773	-0.074253985	-20.24202414	-0 10424		6.0026	0.077621123	391.5449947	0.425957291	1.9664	73.3589483	4 13.563		
Net Yield	86.17223345	2.877556333		0.130298773		80.96809657		0	5.460212		359.5332479			66.1207885		Final Load	899.55492
WATERSHED FUNCTION																% Net Removal	25.6
																Removai	25.0
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692	364.4				687							8211.8			7	
Volume = 515089	4747.635956	2500.055697									360718.7936			26627.2397			
Concentration	0.15	0.15				0.15				0.5	1.1	0.5	1.1	0.	1 0.04		
Wetland Function Factor	-0.4	-0.4				-0.2											
Load	878.4527071	462.5840556									90149.41015			5083.89297		Total Load	122805.301
Wetland Function Value	-351.3810828	-185.0336222		-0.317360082							90149.41015			5083.89297			
Net Yield	527.0716243	277.5504333	5500.129499	0.317360082	5.0269837	697.6844044	66.34095	0.2031105	458.2005	865.6775603	83475.04834	104.7635264	13038	4591.21048	9 394.76	Final Load % Net	110001.586
WATERSHED FUNCTION																Removal	10.4
Scenario 5 - Moderate High Flow (existing conditions)																	
290 and below	496.1	80.3	3345	0.5	5 2.2	592.2	1.6	n	82.8	224.8	11450.7	6	72.4	836.	7 101.8 17293.	3	
Volume = 45305	1299.683143	210.3699988							216.9195		29998.55224			2191.98727		1	
Concentration	0.15	0.15				0.15			1.1							+	
Wetland Function Factor	-0.4	-0.4				-0.2						0.3	1.1	0.	1 1	+	
Load	240.4797221	38.92465569							72.98293		10648.12524	4.122542517	67 326	439.44355	8 50 005	Total Load	13576.4664
	-96.19188886	-15.56986228							72.98293		10648.12524					, otal Load	13370.4004
			-040.0020014	0.121100100				1 0	1 12.30293						UCCC.UC	1	
Wetland Function Value				0.121105105	0.050796024	220 6506242	0.465254	Λ.	72 08202	1/13 5600617	10003 06353	3 831600000	63 844	308 885227	1 46.06	Final Load	12103 0420
Wetland Function Value Net Yield	144.2878333	23.35479341	972.874022	0.121185105	0.959786031	229.6506212	0.465351	0	72.98293	143.5609617	10093.06353	3.831698266	63.816	398.885327	1 46.06	Final Load % Net	12193.9138

Table C10. Expected (concentration doubled) Watershed Functions for Phosphorus - New Madrid Floodway.

New Madrid Floodway - Ex	pected Concen	trations, Runoff C	oefficients, and Fu	nction Factors - Orga	anic Carbon													
Contour Range	Cypress/Tupelo 16	Scrub/shrub marsh 19	BI H 42	Riparian 43 R	iver 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Sovbeans 38	Sovbeans/corn 39	Com 40	Herb. Veg. 41	Pasture	I C Total		
Scenario 1 - Existing	-,,,																	
Conditions (No Flood)																		
275 ft	6.7				C	0.9					18	0						
Volume = 388	35.5622435			0.530779754	C	4.777017784			4.246238		95.54035568							
Concentration/Export Coefficient	4			4	4	4	4			3.6	3.6	3.6	3.6	3.	3.6			
Wetland Function Factor	3.0				-0.1	-0.2				1	1	1	1		1 1			
Load	175.4683769				0				22.11698		497.6321398		2.7646				Total Load	1951.29511
Wetland Function Value	140.3747015								22.11698		497.6321398							
Net Yield WATERSHED FUNCTION	140.3747015	5 (879.9608155	1.309465499	C	18.85630319	0	0	20.02184	C	450.4913818	0	2.5027	72.5791670	42.546		% Net Removal	1628.642811 16.54
Scenario 2 - Authorized Project																		
(2 seasons) 285 ft	171	10.8	375.7	0.1	1.1	170.8	3 0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 00	2370.8		
280 ft	43.3				1.1	9.8					53.6	0.1						
Volume Season 1 = 6707	483.7594905				3.111903155				14.71081	18 38851864	4244.635903			319.960224				
Volume Season 2 = 1098	161.3828921			0.372708758	3.111303130	36.52545825			7.081466		199.7718941	0.372708758						
Concentration/Export Coefficient	101.302032	3.21732200	331.0013071	0.572700730		30.32343020	0.512103	-	7.001400		133.7710341	0.372700730	2.2500	70.7700040	10.020			
Season 1	4		4 4	4	4		4	4	3.6	3.6	3.6	3.6	3.6	3.	3.6			
Concentration/Export Coefficient								i					-					
Season 2	4	1	4	4	4	. 4	4	4	0	- C	0	0	0)	0 0			
Wetland Function Factor	0.8	3 0.8	3 0.8	-0.5	-0.1	-0.2	0.8	-0.2	1	1	1	1	1		1 1			
Load Season 1 *	2386.927377	150.753308	5244.26091	1.395863963	15.3545036	2384.135649	2.791728	0	76.37292		22036.52429							
Load Season 2 **	796.2825554	25.74585629	2920.3157	1.838989735	C	180.2209941	1.83899	0	34.9408	C	985.6984981	1.838989735	11.034	378.831885	79.077		Total Load	39707.75102
Wetland Function Value (Both									_									
Seasons) * Export Coefficients were reduced by 50% for upland and	2546.567946	141.199331	6531.661287	-1.617426849	-1.53545036	-512.8713286	3.704574	0	111.3137	95.46614761	23022.22279	37.08802885	65.376	2039.94285	224.48			
ag land covers ** No Export for upland and ag																		
land covers																		
Net Yield	2546.567946	141.199331	5 6531.661287	1.617426849	13.81905324	2051.485315	3.704574	0	100.5611	86.39303185	20829.29865	33.55405637	59.108	1844.18745	202.75		Final Load	34445.90952
WATERSHED FUNCTION																	% Net Removal	13.25
Scenario 3 - Avoid and Minimize (2 seasons)																		
282 ft	88.9	3.	1 244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48	3 7.7	840.4		
280 ft	43.3				1.1	9.6					53.6							
Volume Season 1 = 2190	231.6646835				2.866492147				6.775345		836.2339362							
Volume Season 2 = 1098	161.3828921			0.372708758	0	36.52545825			7.081466	C	199.7718941	0.372708758						
Concentration/Export Coefficient															10.000			
Season 1	4		4	4	4	. 4	4	4	3.6	3.6	3.6	3.6	3.6	3.	3.6			
Concentration/Export Coefficient																		
Season 2 Wetland Function Factor	0.8	3 0.1	3 0.8	-0.5	-0.1	-0.2	0.8	-0.2	- 0		0	0)) 0			
Load Season 1 *	1143.061348				14.14361623				35.32436	4.050000004	4359.841403	4.075887881	12.228	656.217948	1 104.61			
Load Season 2 **	796.2825554				14.14301023	180.2209941			34.9408		985.6984981	1.838989735				-	Total Load	16502.06991
Wetland Function Value (Both	790.2023334	23.74303023	2920.3137	1.030909733		100.2209941	1.03099	0	34.9400		365.0364361	1.030909733	11.034	370.031003	19.011		TOTAL LUAU	10302.0099
Seasons)	1551.475123	52.48411072	4851.244682	-1.562386514	-1.414361623	-349.5181658	2 /00818		70.26517	1 358620204	5345.539901	5.914877616	23 262	1035.04983	1 183 60			
Net Yield	1551.475123				12.72925461				63.42805		4834.362193						Final Load	13896.38072
	1001.110120	02.10111011	1001.241002	11.002.000014	12.72020101	1000.012000	2.100010		00.12000	1.20000000	1001.002100	0.010210000	21.00	000.000012	100.00		% Net	
WATERSHED FUNCTION																	Removal	15.79
Scenario 4 - Extreme High Flow (existing conditions)																		
300 and below	692				4.4	687							8211.8			75077.7		
Volume = 515089	4747.635956			3.4303728	30.18728064	4713.332228	597.5709	1.3721491			360718.7936							
Concentration	4			4	4	4	4	4	3.6	3.6		3.6		3.	3.6			
Wetland Function Factor	0.8				-0.1	-0.2				20700 40570	1 4050420 500	0750 544770		407000 110	1 40000		T-4-11 '	0007704 000
Load	23425.40552				148.9476652						1856430.588						Total Load	2637701.637
Wetland Function Value Net Yield	18740.32442 18740.32442				-14.89476652 134.0528987						1856430.588 1678447.607	2750.544776		3 137036.448 9 123898.248			Final Load	2352901.176
WATERSHED FUNCTION	10740.32442	9000.43903.	2 193300.10	6.402933321	134.0326967	10004.91740	2330.769	3.4102707	9213.119	20049.14913	1070447.007	2400.039700	202148	123090.240	10070		% Net Removal	10.80
Scenario 5 - Moderate High																		
Flow (existing conditions)																<u> </u>		
290 and below	496.1				2.2	592.2					11450.7	6				17293.3	\longrightarrow	
	1299.683143	210.369998	8763.233449	1.309900366	5.763561611	1551.445994	4.191681		216.9195		29998.55224						\vdash	
Volume = 45305	4	4	4 4	4	4	4	4	4			3.6	3.6	3.6	3.	3.6		\longrightarrow	
Concentration								-0.2	1	1 4	1 4	1 4		III.	11 4	1	1	
Concentration Wetland Function Factor	0.8				-0.1	-0.2		*0.2			-					_		
Concentration Wetland Function Factor Load	6412.79259	1037.99081	3 43238.84542	6.463205594	28.43810461	7655.020706	20.68226	0	1190.94	3233.372851	164699.2104						Total Load	240685.9420
Concentration Wetland Function Factor Load Wetland Function Value	6412.79259 5130.234072	9 1037.990818 2 830.392654	3 43238.84542 7 34591.07634	6.463205594 -3.231602797	28.43810461 -2.843810461	7655.020706 -1531.004141	20.68226 16.54581	0	1190.94 1190.94	3233.372851 3233.372851	164699.2104	86.29998713	1041.4	12034.5332	1464.2			240685.942
Concentration Wetland Function Factor Load	6412.79259	9 1037.990818 2 830.392654	3 43238.84542 7 34591.07634	6.463205594 -3.231602797	28.43810461	7655.020706 -1531.004141	20.68226 16.54581	0	1190.94	3233.372851 3233.372851			1041.4	12034.5332	1464.2		Total Load Final Load Net	240685.9420 213957.275

Table C11. Expected Watershed Functions for Organic Carbon - New Madrid Floodway.

New Madrid Floodway - Hi	gh Retention So	enario - Organic C	arbon														
Contour Range	Cypress/Tupelc 15	Scrub/shrub marsh 19	BI H 42	Riparian 43	River 45	Onen water 24	March 20	Sandhar 24	Cotton 26	Cotton/soybeans 37	Southeans 20	Southeans/core 20	Com 40	Herb Vec 4	1 Paetura I C Tota		
Scenario 1 - Existing	Cypress/Tupelo 16	SCIUD/SIIIUD IIIaiSII 19	DLIT 42	Nipalian 43	KIVEI 43	Open water 24	IVIAISII 29	Sanubai Si	COROTI 30	Collor/Soybearis 37	Suybeans 36	Soybeans/com 39	COIII 40	neib. veg. 4	rasiule LC Tota	-	
Conditions (No Flood)																	
275 ft	6.7		42	0.1	0	0.9) (0	0.8		18	0	0.1	1 2.	9 1.7 73.	1	
Volume = 388	35.5622435			0.530779754	0				4.246238		95.54035568			15.3926128		1	
Concentration/Export Coefficient	30.3022433	4			4		1 4										
Wetland Function Factor	-0.9	-0.9		_		-0.9											
		-0.5									497.6321398					Total Load	1951.295111
Load	175.4683769								22.11698							TOTAL LOAG	1951.29511
Wetland Function Value	-157.9215392			-2.357037899					4.423397		99.52642795		0.5529				
Net Yield	17.54683769	0	109.9951019	0.2618931	0	2.357037899) C	0	4.004368	C	90.09827636	0	0.5005	14.5158334	1 8.5093	Final Load	247.7891759
WATERSHED FUNCTION																% Net Removal	87.30
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	.1 9.9 2370.		
280 ft	43.3	1.4		0.1		9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224		U	
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	C	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	4	4	4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.	6 3.6		
Concentration/Export Coefficient									_		_	_					
Season 2	4	4	4	4	4	4	4	4	0	C	0	0) ()	0 0		
Wetland Function Factor	-0.9	-0.9				-0.9											
Load Season 1 *	2386.927377	150.753308		1.395863963					76.37292		22036.52429			1661.11096			
Load Season 2 **	796.2825554	25.74585629	2920.3157	1.838989735	0	180.2209941	1.83899	0	34.9408	C	985.6984981	1.838989735	11.034	378.831885	5 79.077	Total Load	39707.75102
Wetland Function Value (Both																	
Seasons)	-2864.888939	-158.8492479	-7348.118948	-2.911368329	-13.81905324	-2307.920979	-4.16765	_ n	22.26274	19.09322952	4604.444557	7.41760577	13.075	407.988570	8 44.896		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	318.3209932	17.64991643	816.4576609	0.32348537	1.53545036	256.4356643	0.463072	0	20.11223	17.27860637	4165.859729	6.710811273	11.822	368.837490	2 40.55	Final Load	6042.35716
WATERSHED FUNCTION																% Net Removal	84.78
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	9 48.	3 7.7 840.	4	
280 ft	43.3	1.4		0.1	0	9.8							0.6	3 20.	6 4.3 294.	6	
Volume Season 1 = 2190	231.6646835	8.07829605				317.6594479			6.775345		836.2339362			125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607							7.081466		199.7718941			76.7780040			
Concentration/Export Coefficient Season 1	101.3020321	3.217322007	331.0013071	0.372700730	4	30.32343023	0.572700	4	3.6								
Concentration/Export Coefficient													-				
Season 2			ا ا	,	ا ا		ا ا										
	- 4	4	4		4	4	4	4	0		0	0.0	, ,	,	0 0		
Wetland Function Factor	-0.9														2 0.2		
Load Season 1 *	1143.061348								35.32436		4359.841403			656.217948			
Load Season 2 **	796.2825554	25.74585629	2920.3157	1.838989735	0	180.2209941	1.83899	0	34.9408		985.6984981	1.838989735	11.034	378.831885	5 79.077	Total Load	16502.06991
Wetland Function Value (Both																	
Seasons)	-1745.409513	-59.04462456	-5457.650267	-2.812295726	-12.72925461	-1572.831746	-2.8123	0	14.05303	0.271725859	1069.10798	1.182975523	4.6523	207.009966	9 36.738		
Net Yield	193.9343903	6.56051384	606.4055853	0.312477303	1.414361623	174.7590829	0.312477	0	12.68561	0.246010193	966.8724385	1.069048731	4.2002	187.012662	5 33.177	Final Load % Net	2188.961425
WATERSHED FUNCTION																Removal	86.74
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692	364.4	7221.2	0.5	4.4	687	87.1	0.2	288.6	643.7	52577.2	77.9	8211.8	3881.	1 340.7 75077.	7	
Volume = 515089	4747.635956	2500.055697		3.4303728							360718.7936			26627.2397			
Concentration	A 41.0000000	2300.033097			30.10720004	47 13.332220		1.0.21431	3.6							+ +	
Wetland Function Factor	-0.9				-0.9	-0.9		-0.9								+ +	
																Total Local	2627704 627
Load	23425.40552										1856430.588			137036.448		Total Load	2637701.637
Wetland Function Value	-21082.86497	-11102.01733		-15.23328394		-20930.53213					371286.1176			27407.2896			
Net Yield	2342.540552	1233.557482	24445.01999	1.692587104	14.89476652	2325.614681	294.8487	0.6770348	1842.624	4109.829829	335689.5213	497.3679411	52430	24779.6497	6 2175.3	Final Load % Net	452182.9644
WATERSHED FUNCTION																Removal	82.86
Scenario 5 - Moderate High Flow (existing conditions)																	
	496.1	80.3	3345	0.5	2.2	592.2	1.6	0	82.8	224.8	11450.7	-	72.4	1 836.	7 101.8 17293.	3	
290 and below																3	
Volume = 45305	1299.683143				5.763561611				216.9195		29998.55224			2191.98727		+	
Concentration	4	4			4	4										1	
Wetland Function Factor	-0.9	-0.9															
Load	6412.79259	1037.990818									164699.2104					Total Load	240685.9420
Wetland Function Value	-5771.513331	-934.1917366				-6889.518635			238.188		32939.84209			2406.90664			
Net Yield	641.279259	103.7990818							216.7818		29979.51296			2190.59607		Final Load	39287.26007
																% Net	
WATERSHED FUNCTION								1	1				1	1		Removal	83.68

Table C12. High Watershed Functions for Organic Carbon - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario A - Organio	Carbon	T	T												
		Scrub/shrub marsh 19		Riparian 43	River 45	004	M	C	C-# 2C	Cotton/soybeans 37	C 20	C	C 40	Harb Man 44	Destruct I C Tetal		
Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLIT 42	Ripariari 43	River 45	Open water 24	Marsh 29	Sandbar 31	Collon 36	Cotton/soybeans 37	Soybeans 36	Soybeans/com 39	Com 40	merb. veg. 41	Pasture LC Total		
Conditions (No Flood) 275 ft	6.7	,	42	0.1	0	0.9		0	0.8	0	18		0.1	2.9	9 1.7 73.	1	
Volume = 388	35.5622435								4.246238		95.54035568			15.3926128		1	
Concentration/Export Coefficient	4	1			4	44	4			3.6							
Wetland Function Factor	-0.1	-0.1	-0.1	-0.	-0.1	-0.1	-0.1	-0.1		1	1	1	1	-	1 1		
Load	175.4683769) (23.57037899			22.11698	0	497.6321398		2.7646	80.1740669	6 46.999	Total Load	1951.29511
Wetland Function Value	-17.54683769) (-109.9951019	-0.261893	0			0	22.11698	0	497.6321398		2.7646	80.1740669	6 46.999		
Net Yield	157.9215392	2	989.9559175	2.357037899	0	21.21334109	C	0	20.02184	0	450.4913818		2.5027	72.5791670	6 42.546	Final Load	1759.58936
WATERSHED FUNCTION																% Net Removal	9.8
Scenario 2 - Authorized Project																	
(2 seasons) 285 ft	171	10.8	375.7	0.	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	113.	1 9.9 2370.8		
280 ft	43.3					9.8											
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081	18 38851864	4244.635903			319.960224		3	
Volume Season 2 = 1098	161.3828921	5.217922607				36.52545825			7.081466		199.7718941			76.7780040			
Concentration/Export Coefficient Season 1	4	0.211022001	4 4	1 2.072700700	4	4	4	4	3.6					3.0			
Concentration/Export Coefficient																	
Season 2 Wetland Function Factor	-0.1	-0.	1 -0.1	-0.	-0.1	-0.1	-0.1	-0.1	1	0	1	1	1 1		1 1		
Load Season 1 *	2386.927377	150.753308							76.37292	95.46614761	22036.52429	35.24903912	54.342	1661.11096	B 145.4		
Load Season 2 **	796.2825554					180.2209941			34.9408		985.6984981			378.831885		Total Load	39707.7510
Wetland Function Value (Both																	
Seasons) * Export Coefficients were reduced by 50% for upland and	-318.3209932	-17.64991643	-816.4576609	-0.32348537	-1.53545036	-256.4356643	-0.46307	0	111.3137	95.46614761	23022.22279	37.08802885	65.376	2039.94285	4 224.48		
ag land covers ** No Export for upland and ag																	
Net Yield	2864.888939	158.8492479	7348.118948	2.911368329	13.81905324	2307.920979	4.167646	0	100.5611	86.39303185	20829.29865	33.55405637	59.108	1844.18745	1 202.75	Final Load	35856.5307
WATERSHED FUNCTION																% Net Removal	9.70
Scenario 3 - Avoid and															 		
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48.3	3 7.7 840.4	4	
280 ft	43.3	1.4	158.8	0.1	0	9.8	0.1	0					0.6	20.	6 4.3 294.6	3	
Volume Season 1 = 2190	231.6646835	8.07829605	637.1430271	0.260590195	2.866492147	317.6594479	0.26059	0	6.775345	0.260590195	836.2339362	0.781770585	2.3453	125.865064	3 20.065		
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	4	. 4	1 4		4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.0	6 3.6		
Concentration/Export Coefficient Season 2							١,							l .			
Wetland Function Factor	-0.1	-0.1	-0.1	-0.	-0.1	-0.1	-0.1	-0.1	1	1	1	1	1		1 1		
Load Season 1 *	1143.061348								35.32436	1 358629294	4359.841403	4.075887881	12 228	656.217948	B 104.61		
Load Season 2 **	796.2825554					180.2209941			34.9408		985.6984981			378.831885		Total Load	16502.0699
Wetland Function Value (Both																	
Seasons)	-193.9343903	-6.56051384	-606.4055853	-0.312477303	-1.414361623	-174.7590829	-0.31248	0	70.26517	1.358629294	5345.539901	5.914877616	23.262	1035.04983	4 183.69		
Net Yield	1745.409513	59.04462456	5457.650267	2.812295726	12.72925461	1572.831746	2.812296	0	63.42805	1.230050964	4834.362193	5.345243655	21.001	935.063312	7 165.88	Final Load % Net	14879.6026
WATERSHED FUNCTION																Removal	9.8
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692					687							8211.8			7	
Volume = 515089	4747.635956	2500.055697	49542.81613	3.4303728	30.18728064	4713.332228	597.5709	1.3721491			360718.7936			26627.2397			
Concentration	4	4	4	-0.1	4	4	1 4	4	3.6					3.		+ +	
Wetland Function Factor Load	-0.1 23425.40552					-0.1 23256.14681				22728 18578	1856430.588			137036.448	1 1 1	Total Load	2637701.63
Wetland Function Value	-23425.40552										1856430.588			137036.448		rotal Lodu	203//01.03
Net Yield	21082.86497										1678447.607			123898.248		Final Load	2383550.20
WATERSHED FUNCTION																% Net Removal	9.6
1																	
Scenario 5 - Moderate High			1		5 2.2	592.2	1.6		82.8	224.8	11450.7	. 6	72.4	836.	7 101.8 17293.3	3	
Flow (exisiting conditions)	406.1	80.1	33/15													-1	
Flow (exisiting conditions) 290 and below	496.1 1299 683143	80.3				1551 445004	4 191681	Λ.	216 9195	588 Q3120/A6		15 71880/30	189 67	2101 08727	3 266 7		
Flow (exisiting conditions) 290 and below Volume = 45305	496.1 1299.683143 4					1551.445994 4		0	216.9195					2191.98727			
Flow (exisiting conditions) 290 and below Volume = 45305 Concentration	1299.683143 4	210.3699988	8763.233449 4 4	1.309900366	5.763561611	4	. 4	4	3.6								
Flow (exisiting conditions) 290 and below Volume = 45305		210.3699988	8 8763.233449 4 4 1 -0.1	1.309900366	5.763561611 4 -0.1	-0.1	-0.1	-0.1	3.6	3.6		3.6	3.6		6 3.6 1 1	Total Load	240685.942
Flow (exisiting conditions) 290 and below Volume = 45305 Concentration Wetland Function Factor	1299.683143 4 -0.1	210.3699988 -0.1037.990818	8 8763.233449 4 4 6 -0.1 3 43238.84542	1.309900366 -0.1 2 6.463205594	5.763561611 4 -0.1 4 28.43810461	-0.1 7655.020706	-0.1 20.68226	-0.1 0 0	3.6 1 1190.94 1190.94	3.6 1 3233.372851 3233.372851	3.6	3.6 1 86.29998713	3.6 1 1041.4	3.0	6 3.6 1 1 1 1464.2	Total Load	240685.942
Flow (exisiting conditions) 290 and below Volume = 45305 Concentration Wetland Function Factor Load	1299.683143 4 -0.1 6412.79259	210.3699988 -0.1037.990818	8 8763.233449 4 -0.1 8 43238.84542 3 -4323.884542	1.309900366 -0 6.463205594 -0.646320559	5 5.763561611 4 -0.1 28.43810461 -2.843810461	-0.1 7655.020706 -765.5020706	-0.1 20.68226 -2.06823	-0.1 0 0	3.6 1 1190.94	3.6 1 3233.372851 3233.372851	3.6 1 164699.2104	3.6 1 86.29998713 86.29998713	3.6 1 3 1041.4 3 1041.4	12034.5332	6 3.6 1 1 1 1464.2 1 1464.2	Total Load Final Load % Net	240685.942 219796.393

Table C13. Low Watershed Functions for Organic Carbon - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario B - Organio	Carbon														
		Scrub/shrub marsh 19		Riparian 43	River 45	Open water 24	March 20	Sandhar 31	Cotton 36	Cotton/soybeans 37	Southeane 38	Southeane/com 30	Com 40	Herb Veg 41	Pacture I C Total		
Scenario 1 - Existing	Cypress/Tupelo 10	SCIUD/SHIUD HIAISH 19	DEN 42	Ripanan 43	River 43	Open water 24	IVIAISII 29	Sandbar Si	COLLOIT 36	Collon/soybeans 37	Suyueans 36	Soybeans/com 39	COIII 40	neib. veg. 41	rastule LC Total		
Conditions (No Flood) 275 ft	6.7	,	42	0.1	0	0.9) (0.8	0	18		0.1	2.5	9 1.7 73.	1	
Volume = 388	35.5622435								4.246238		95.54035568			15.3926128			
Concentration/Export Coefficient	4	4			4					3.6							
Wetland Function Factor	-0.1	-0.1								1	1	1	1 1		1 1		
Load	175.4683769	((22.11698		497.6321398			80.1740669		Total Load	1951.29511
Wetland Function Value	-17.54683769								22.11698		497.6321398			80.1740669			
Net Yield WATERSHED FUNCTION	157.9215392	2 (989.9559175	2.357037899	0	21.21334109) (0	20.02184	0	450.4913818		2.5027	72.5791670	6 42.546	% Net	1759.58936
Scenario 2 - Authorized Project																Removal	9.8
(2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	2 0	5.2	6.5	1500.4	2.4	1 3.7	113.	1 9.9 2370.	8	
280 ft	43.3	1.4	158.8	0.1			0.1			0		0.1	0.6	20.0	6 4.3 294.	6	
Volume Season 1 = 6707	483.7594905	30.55323098							14.71081		4244.635903			319.960224			
Volume Season 2 = 1098 Concentration/Export Coefficient	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	9 0	7.081466		199.7718941			76.7780040			
Season 1	4	4	1 4	4	4	4	4	1 4	3.6	3.6	3.6	3.6	3.6	3.0	6 3.6		
Concentration/Export Coefficient Season 2	4		1 4		4	4	. 4	4 4	0	0	C) () () (0 0		
Wetland Function Factor	-0.1	-0.1								1 100.000	1 20100 50	1 00 0070	1 1	1710 105	1 1		
Load Season 1 * Load Season 2 **	2386.927377 796.2825554	150.753308				2384.135649 180.2209941			80.16091		23129.50567 985.6984981			1743.49979 378.831885		Total Load	40903,2995
Wetland Function Value (Both Seasons)	-318.3209932	25.74585625							115.1017		24115.20417					Total Load	40903.2995
* Export Coefficients were NOT reduced by 50% for upland and ag land covers	-318.3209932	-17.0499104	-610.4570008	-0.32348531	-1.53545036	-230.4330043	-0.46307		115.1017	100.2011376	24115.20417	36.63033265	0 60.072	2122.3316	5 231.09		
** No Export for upland and ag land covers																	
Net Yield	2864.888939	158.8492479	7348.118948	2.911368329	13.81905324	2307.920979	4.167646	6 0	104.3491	91.12802185	21922.28003	35.30236037	61.803	1926.57627	7 209.96	Final Load % Net	37052.0793
WATERSHED FUNCTION																Removal	9.42
Scenario 3 - Avoid and Minimize (2 seasons)																	
282 ft	88.9	3.1							2.6								
280 ft	43.3 231.6646835															Б	
Volume Season 1 = 2190 Volume Season 2 = 1098	161.3828921	8.07829605 5.217922607				317.6594479 36.52545825			6.775345 7.081466	0.260590195	836.2339362 199.7718941	0.781770585		125.865064			
Concentration/Export Coefficient Season 1	101.3020921	5.217922001	591.8615071	0.372706756	. 0	30.52545625	0.372708	, ,		3.6							
Concentration/Export Coefficient	4		4		. 4	4		. 4	3.6	3.6	3.6	3.6	3.6	3.0	3.6		
Season 2 Wetland Function Factor	-0.1	-0.1	1 -0.1	-0.	-0.1	-0.1	-0.1	-0.1	- 0	0) (,	0 0		
Load Season 1 *	1143.061348								37.21836	1 421475204	4593.604217	4.294425881	1 12 002	691.402566	B 110.22		
Load Season 2 **	796.2825554					180.2209941			34.9408		985.6984981			378.831885		Total Load	16779.4674
Wetland Function Value (Both	730.2023334	23.74303023	2020.0101	1.000000730	, ,	100.2203341	1.00000	,	34.3400		303.0304301	1.030303730	11.05	370.031003	3 73.077	Total Load	10//3.40/4
Seasons)	-193 9343903	-6.56051384	-606.4055853	-0.312477303	-1.414361623	-174 7590829	-0.31248	3 0	72.15916	1.431475294	5579.302715	6.133415616	23.917	1070.23445	2 189.3		
Net Yield	1745.409513	59.04462456	5457.650267			1572.831746	2.812296	6 0	65.32205		5068.125007			970.247930		Final Load % Net	15157.0002
WATERSHED FUNCTION																Removal	9.6
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692												8211.8			7	
Volume = 515089	4747.635956	2500.055697	49542.81613	3.4303728	30.18728064	4713.332228	597.5709	1.3721491			360718.7936			26627.2397			
Concentration	4	4	4	4	4	4	4	4	3.6					3.0			
Wetland Function Factor Load	-0.1 23425.40552									22720 40570	1856430.588			137036.448	1 1 1	Total Load	2637701.63
Wetland Function Value	23425.40552 -2342.540552										1856430.588			137036.448		TOTAL LOAD	∠03//01.63
Net Yield	21082.86497										1678447.607			123898.248		Final Load	2383550.20
WATERSHED FUNCTION	2.002.00437	11102.01730		10.2002039	.54.0520907	20000.00213	2000.030	0.0000100	02.0.119	23040.14910	.0.0141.007	2.30.033700		.2000.240	10010	% Net Removal	9.6
Scenario 5 - Moderate High																	
Flow (exisiting conditions)																	
290 and below	496.1	80.3							82.8	224.8						3	
Volume = 45305	1299.683143	210.3699988	8763.233449	1.309900366	5.763561611				216.9195		29998.55224			2191.98727			
Concentration	4	4	4	4	4	4			3.6	3.6	3.6	3.6	3.6	3.0			
Wetland Function Factor	-0.1	-0.1	-0.1							1 2000 0000	1 404000 0:-	1 00 0000	1 1	1000155	1 1	T	0.40008 - : -
Load Value Value	6412.79259								1190.94		164699.2104			12034.5332		Total Load	240685.942
Wetland Function Value Net Yield	-641.279259 5771.513331	9 -103.7990818 934.1917366						B 0	1190.94 1083.909	3233.372851 2942.787128	164699.2104 149897.5648			12034.5332		Final Load	219796.393
WATERSHED FUNCTION																% Net Removal	8.6

Table C14. Low (no runoff reduction) Wateshed Functions for Organic Carbon - New Madrid Floodway.

Contour Range	Cynress/Tunelo 16	Scrub/shrub marsh 19 Bl	H 42	Riparian 43	River 45	Onen water 24	Marsh 20	Sandhar 31	Cotton 36	Cotton/soybeans 37	Sovheans 38	Sovheans/core 30	Com 40	Herb Veg 41	Pasture	LC Total		
cenario 1 - Existing	Cypress/Tupero 16	SCIUD/SIIIUD IIIaisii 19 Bi	LF1 42	Nipaliali 43	Kivei 45	Open water 24	IVIAISII 29	Saliubai 31	COLLOIT 30	Cotton/Soybeans 37	Suybearis 30	Soybeans/com 39	COIII 40	neib. veg. 41	Fasiule	LC Total		
onditions (No Flood)																		
75 ft	6.7	0	42		0					0	18			2.9	1.7	73.1		
olume = 388	35.5622435	0	222.9274966			4.777017784			4.246238		95.54035568			15.39261286				
Concentration/Export Coefficient	4	4	4	1	4		4		3.6	3.6	3.6	3.6	3.6	3.6	3.6			
Vetland Function Factor	0.8	0.8	0.8								1		1					
.oad	175.4683769	0	1099.951019	2.618930999	0	23.57037899	0	0	22.11698	0	497.6321398	0	2.7646	80.17406696	46.999		Total Load	1951.295
Vetland Function Value	140.3747015	0	879.9608155	-1.309465499	0	-4.714075798	C	0	22.11698	0	497.6321398	0	2.7646	80.17406696	46.999			
let Yield	140.3747015	0	879.9608155	1.309465499	0	18.85630319	0	0	20.02184	0	450.4913818	0	2.5027	72.57916706	42.546		Final Load	1628.642
NATERSHED FUNCTION																	% Net Removal	16
cenario 2 - Authorized Project 2 seasons)																		
85 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	113.1	99	2370.8		
BO ft	43.3	1.4	158.8	0.1							53.6		0.6					
olume Season 1 = 6707	483.7594905	30.55323098	1062.856378						14.71081					319.9602244				
olume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758					7.081466		199.7718941	0.372708758		76.77800407				
oncentration/Export Coefficient	101.0020021	0.E.1.0EE007	001.0010071	0.0.2.00730		30.020.0020	2.012.00	1				0.072700700	000		10.020			
eason 1	4	4	4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.6	3.6			
Concentration/Export Coefficient leason 2			-						_		_		_		_		ı	
eason 2 / etland Function Factor	8	0.8	0.8	-0.5	8	8	0.0	-0.2	1	0	- 0	0	- 0	-	0		$\overline{}$	
oad Season 1 *	2386.927377	150.753308	5244.26091	1.395863963		-0.2 2384.135649			76.37292		22026 52420	25 24002042	E4 242	1661.110968	1 145.4		$\overline{}$	
oad Season 1 * oad Season 2 **	1592.565111	51.49171259	5244.26091			360.4419881			69.88161		1971.396996			757.6637709			Total Load	45125.4
	1092.005111	51.49171259	5640.631399	3.07797947	0	300.44 19881	3.011979	0	101 00.60	0	19/1.390996	3.0119/94/	22.068	151.003//0	156.15		LOISI FORG	45125.4
Vetland Function Value (Both Seasons)	3183,59399	161.7960165	8867.913847	-2.536921717	1 52545000	-548.9155275	E 175700		146.2545	95.46614761	24007 02420	38.92701859	76.44	2418.774739	303.56			
Export Coefficients were educed by 50% for upland and ig land covers * No Export for upland and ag	3163.39399	161.7900105	8807.913847	*2.330921717	*1.33343036	-546.9155275	3.173760	0	140.2343	95.40014701	24007.92120	38.92701639	70.41	2410.77473	303.30			
Ind covers let Yield	3183.59399	161.7960165	8867.913847	2.536921717	13.81905324	2195.66211	5 175766	. 0	132.0079	86.39303185	21716 42729	35 20914713	69 039	2185.136148	273.92		Final Load	38928.
ATERSHED FUNCTION	0100.00000	101.7000100	3001.010041	2.000021111	10.01000021	2100.00211	0.110100		102.0010	00.00000100	21110.12120	50.20014110	00.000	2100.10014	270.02		% Net Removal	1
cenario 3 - Avoid and																		
Minimize (2 seasons)																	1	
182 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48.3	7.7	840.4		
180 ft	43.3	1.4	158.8								53.6							
olume Season 1 = 2190	231.6646835	8.07829605	637.1430271			317.6594479			6.775345					125.8650643				
olume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758					7.081466		199.7718941			76.77800407				
oncentration/Export Coefficient eason 1	101.3626921	5.217922007	391.8613071	0.372708736	4	30.32343623	0.372708	4	3.6		3.6	3.6	3.6	3.6				
Concentration/Export Coefficient																		
eason 2	8	8	8	3	8	8	8	8	0	0	0	0	0	(0		\longrightarrow	
Vetland Function Factor	0.8	0.8	0.8								1	1	1		1			
oad Season 1 *	1143.061348	39.8592821	3143.740153						35.32436					656.2179488				
oad Season 2 **	1592.565111	51.49171259	5840.631399	3.67797947	0	360.4419881	3.677979	0	69.88161	0	1971.396996	3.67797947	22.068	757.6637709	158.15		Total Load	21919.73
Vetland Function Value (Both																	1	
easons)	2188.501167	73.08079575	7187.497242			-385.5623646		0	105.206		6331.2384							
let Yield	2188.501167	73.08079575	7187.497242	2.481881382	12.72925461	1542.249458	3.97101	0	94.87477	1.230050964	5721.490841	7.000334416	30.932	1276.01201	237.05		Final Load	18379.
VATERSHED FUNCTION																	% Net Removal	1
Scenario 4 - Extreme High Flow																		
existing conditions)	692	364.4	70010	0.5	4.4	687	87.1		288.6	643.7	52577.2	77.0	8211.8	3881.1	2407	75077.7		
00 and below			7221.2													/50//.7		
olume = 515089	4747.635956	2500.055697	49542.81613	3.4303728			597.5709			4416.261943		534.4520823	56339			\vdash		
Concentration	4	4	4	4			4	4			3.6	3.6	3.6	3.6	3.6			
Vetland Function Factor	0.8	0.8	0.8								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	407000 : : -	1 10000			000=
oad	23425.40552	12335.57482	244450.1999											137036.4484			Total Load	2637701
Vetland Function Value	18740.32442 18740.32442	9868.459852 9868.459852	195560.16 195560.16	-8.462935521 8.462935521	-14.89476652 134.0528987	-4651.229362 18604.91745								137036.4484			Final Load	2352901
	18740.32442	9868.459852	195560.16	8.462935521	134.0528987	18604.91745	2358.789	5.4162787	9213.119	20549.14915	16/844/.60/	2486.839706	262149	123898.2488	10876		% Net	
/ATERSHED FUNCTION																	Removal	1
														1			1	
low (existing conditions)	496.1	00.0	0015			F00.0	1.6		00.0	0010	11450.7	_	70 1	000	404.0	47000 0		
90 and below		80.3	3345	0.5								6				17293.3		
olume = 45305	1299.683143	210.3699988	8763.233449	1.309900366	5.763561611	1551.445994	4.191681		216.9195					2191.987273				
oncentration	4	4	4	4	4	4	4	4			3.6		3.6	3.6				
etland Function Factor	0.8	0.8	0.8								1	1	1		1		\longrightarrow	
oad	6412.79259	1037.990818	43238.84542											12034.53321			Total Load	240685
etland Function Value	5130.234072	830.3926547	34591.07634	-3.231602797	-2.843810461	-1531.004141	16.54581	0	1190.94	3233.372851	164699.2104	86.29998713	1041.4	12034.5332	1464.2			
et Yield	5130.234072	830.3926547	34591.07634	3.231602797	25.59429415	6124.016564	16.54581	0	1083.909	2942.787128	149897.5648	78.54414042		10952.98038			Final Load	213957

Table C15. Expected (concentration doubled) Watershed Functions for Organic Carbon - New Madrid Floodway.

New Madrid Floodway - Ex	pected Concen	trations. Runoff Co	pefficients, and Fu	nction Factors - Se	ediments											
•	•									0 1 00	0 1 / 00	0 40				
Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29 Sandbar 3	1 Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total	al	
Conditions (No Flood) 275 ft	6.7		42	0.1	0	0.9		0 0.1	8 0	18	,	0.1	2.9	1.7 73		
Volume = 388	35.5622435							0 4.246238		95.54035568			15.39261286		.1	
Concentration/Export Coefficient	150							50 130			130					
Wetland Function Factor	-0.8	-0.8	-0.8	-0.5	-0.1	-0.2		.2	1 1	1	1	1 1	1	1		
Load	6580.064134							0 827.768		18624.78224			3000.659361		Total Load	73126.0144
Wetland Function Value	-5264.051307	0						0 827.768		18624.78224			3000.659361			
Net Yield WATERSHED FUNCTION	1316.012827	0	8249.632646	49.10495622	2 0	707.1113696	6 0	0 749.2002	2 0	16857.00382	(93.650021	2715.850615	1592.1	Final Load % Net Removal	32329.61678 55.79
Scenario 2 - Authorized Project																
(2 seasons)																
285 ft	171							0 5.2								
280 ft	43.3					9.8		0 1.9			0.1				.6	
Volume Season 1 = 6707 Volume Season 2 = 1098	483.7594905 161.3828921	30.55323098 5.217922607	1062.856378 591.8615071	0.282900287		483.1936899 36.52545825		0 14.7108		4244.635903 199.7718941	0.372708758		319.9602244 76.77800407			
Concentration/Export Coefficient	101.3020921	5.217922007	591.0015071	0.3/2/06/56	0	36.52545625	0.372709	0 7.061400	0	199.7710941	0.372706756	2.2302525	76.77800407	16.026		
Season 1	150	150	150	150	150	150	150 15	50 130	0 130	130	130	130	130	130		
Concentration/Export Coefficient Season 2	260	260	260	260	260	260	260 26	30	0	_		,	,			
Wetland Function Factor	-0.8								1 1	1	-	1	1	1		
Load Season 1 *	89509.77664		196659.7841					0 2858.723	3 3573.40416	824851.6311	1319.410767	2034.0916	62177.23239	5442.6		
Load Season 2 **	51758.3661		189820.5205					0 2271.152		64070.40238			24624.07255		Total Load	1636365.932
Wetland Function Value (Both Seasons)	-113014.5142	-5861.383768	-309184.2437	-85.93961571	-57.57938848	-20223.89029	470.070	0 5129.876	0570 10110	888922.0335	4 400 045	0754 007	86801.30494	10583		
* Export Coefficients were reduced by 50% for upland and aq land covers	-113014.5142	-5861.383768	-309184.2437	-85.93961571	-57.57938848	-20223.89025	9 -179.379	0 5129.876	5 3573.40416	888922.0335	1438.9451	2/51.29/6	86801.30494	10583		
** No Export for upland and ag land covers																
Net Yield	28253.62855	1465.345942	77296.06092	85.93961571	518.2144963	80895.56117	44.84483	0 4630.567	7 3233.162319	803976.7074	1301.36391	2485.9009	78418.68966	9550.3	Final Load	1092156.32
WATERSHED FUNCTION															% Net Removal	33.26
Scenario 3 - Avoid and																
Minimize (2 seasons)																
282 ft	88.9							0 2.0			0.3					
280 ft Volume Season 1 = 2190	43.3 231.6646835					9.8 317.6594479		0 1.9	0.360600406	53.6 836.2339362	0.1		20.6 125.8650643		.0	
Volume Season 2 = 1098	161.3828921		591.8615071		3 2.000432147		0.20033	0 7.081466	6 0.200330133	199.7718941	0.372708758					
Concentration/Export Coefficient	101.0020021	O.ETTOEEGOT	001.0010011	0.072700700	,	00.02010020	0.072700	0 1.00140		100.7710011	0.072700700	Z.EGOLOLO	70.77000101	10.020		
Season 1	150	150	150	150	150	150	150 15	50 130	0 130	130	130	130	130	130		
Concentration/Export Coefficient										_						
Season 2 Wetland Function Factor	260					-0.2			0 0	0) (0		
Load Season 1 *	42864.80055							0 1322.033	1 En 047400E4	163169.3821	152 5422705	457 60604	24559.30556	2015 2		
Load Season 2 **	51758.3661		189820.5205			11714.36461		0 2271.152		64070.40238	119.5343328		24559.30556		Total Load	767428.1007
Wetland Function Value (Both	31730.3001	107 3.400033	103020.3200	113.3343320	,	11714.30401	113.3343	0 22/1.102	- 0	04070.40230	113.5545520	717.200	24024.07250	3140	Total Load	707420.1007
Seasons)	-75698.53332	-2534.56299	-246168.621	-83.87560315	-53.03856086	-14098.14669	-134.201	0 3593.185	50.84742351	227239.7844	272.0766033	1174.8328	49183.37811	9055.2		
Net Yield	18924.63333	633.6407476	61542.15524	83.87560315	477.3470478	56392.58674	33.55024	0 3240.706	6 46.02573616	205359.9495	245.658108	1059.717	44392.09587	8170	Final Load % Net	400601.9018
WATERSHED FUNCTION															Removal	47.80
Scenario 4 - Extreme High Flow (existing conditions)																
300 and below	692							.2 288.0				8211.8	3881.1	340.7 75077	.7	
Volume = 515089	4747.635956	2500.055697	49542.81613	3.4303728	30.18728064	4713.332228	597.5709 1.372149	91 1980.01	1 4416.261943	360718.7936	534.4520823	56339.071	26627.23975	2337.5		
Concentration	260					260						130				
Wetland Function Factor	-0.8								1 1			1 105	1			400
Load	1522651.359							650208.4					8744018.305		Total Load	168671861.8
Wetland Function Value Net Yield	-1218121.087 304530.2718		-12711410.4 3177852.599				38330.33 352.058	29 650208.4		118455077 106886183.2	175506.6929 158365.8633		8744018.305 7890035.33		Final Load	139116604.8
WATERSHED FUNCTION	304330.27 10	100302.4720	3177632.398	330.0900008	0713.430412	1209319.03	36330.33 332.006	12 300703.	1300002.134	100000103.2	136363.663	10094000	7690033.33	092022	% Net Removal	17.52
Scenario 5 - Moderate High																77.02
Flow (existing conditions)																
290 and below	496.1							0 82.8				72.4			1.3	
Volume = 45305	1299.683143							0 216.9195		29998.55224			2191.987273			
Concentration	260	260	260					50 130	0 130	130	130	130	130			
Wetland Function Factor	-0.8							.2 .	1 1	1	1	1	1			
Load	416831.5184							0 73926.14		10223502.46			747028.9594		Total Load	15111178.0
M 4 15 6 M 1																
Wetland Function Value	-333465.2147					-99515.26917		0 73926.14		10223502.46					Final ! !	11201007 0
Wetland Function Value Net Yield	-333465.2147 83366.30368		562104.9905			398061.0767		0 66969.14		9261395.488			676728.0258		Final Load	11391827.91

Table C16. Expected Watershed Functions for Sediment - New Madrid Floodway.

New Madrid Floodway - Hig	ah Retention Sc	enario - Sediment	s	1	1												
				D: : 40	D: 45			0 " 04	0 " 00	0 / 1 07	0 1 00	0 1 / 00	0 10				
Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	marsn 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 4	Pasture LC Total		
Conditions (No Flood) 275 ft	6.7) 42	2 0.1	0	0.9	0		0.8		18	3 0	0.1		9 1.7 73.		
Volume = 388	35.5622435								4.246238		95.54035568			3 15.3926128		1	
Concentration/Export Coefficient	150	150															
Wetland Function Factor	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	0.2	0.2	0.2	0.2	0.2	2 0	2 0.2		
Load	6580.064134	(41248.16323	98.20991245				0	827.7681	0	18624.78224	1 0	103.47	3000.65936	1 1759	Total Load	73126.0144
Wetland Function Value	-5922.057721	(165.5536		3724.956448			600.131872			
Net Yield WATERSHED FUNCTION	658.0064134	(4124.816323	9.820991245	0	88.3889212	0	0	149.84	0	3371.400763	3 0	18.73	543.17012	3 318.41	% Net Removal	9282.58364 87.3
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	171																
280 ft Volume Season 1 = 6707	43.3 483.7594905	30.55323098							1.9		53.6 4244.635903			5 20 7 319.960224		0	
Volume Season 2 = 1098	161.3828921	5.217922607							7.081466		199.7718941			319.90022			
Concentration/Export Coefficient Season 1	150	150	150	150	150	150	150	150	130								
Concentration/Export Coefficient																	
Season 2	260	260				260		260		0	0	0) ()	0 0		
Wetland Function Factor	-0.9																
Load Season 1 * Load Season 2 **	89509.77664 51758.3661	5653.249051 1673.480659							2858.723		824851.6311 64070.40238			1 62177.2323		Total Load	1636365.93
Wetland Function Value (Both		107 3.40003							2211.132				, , , , , , , , , , , , ,	24024.0120	5 5170	. Stail Load	1000000.932
Seasons)	-127141.3285	-6594.056739	-347832.2741	-154.6913083	-518.2144963	-91007.50631	-201.802	0	1025.975	714.6808321	177784.4067	287.7890199	550.26	17360.2609	9 2116.5		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	14126.81427	732.672971	38648.03046	17.18792314	57.57938848	10111.94515	22.42241	0	926.1134	646.6324639	160795.3415	260.2727819	497.18	15683.7379	3 1910.1	Final Load	244435.9975
WATERSHED FUNCTION																% Net Removal	85.06
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1	244.5	0.1	1.1	121.9	0.1	0	2.6	0.1	320.9	0.3	0.9	48	3 7.7 840.	4	
280 ft	43.3								1.9							6	
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345	0.260590195	836.2339362	0.781770585		125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Concentration/Export Coefficient	150	100	150	150	150	150	150	150	130	130	130	130	1 130) 13	0 130		
Season 2	260	260	260	260	260	260	260	260	0		0	0)	0 0		
Wetland Function Factor	-0.9	-0.9								0.2	0.2	0.2	0.2	2 0	2 0.2		
Load Season 1 *	42864.80055	1494.723079		48.21687351	530.3856086	58776.36881	48.21687		1322.033		163169.3821	152.5422705	457.63	3 24559.3055	6 3915.3		
Load Season 2 **	51758.3661	1673.480659	189820.5205	119.5343328	0	11714.36461	119.5343	0	2271.152	. 0	64070.40238	119.5343328	717.21	24624.0725	5 5140	Total Load	767428.1007
Wetland Function Value (Both																	
Seasons)	-85160.84999	-2851.383364							718.6371		45447.95689			9836.67562		Final Load	100100 000
Net Yield WATERSHED FUNCTION	9462.316665	316.8203738	30771.07762	16.77512063	53.03856086	7049.073343	16.77512	0	648.1412	9.205147232	41071.9899	49.1316216	211.94	8878.41917	3 1634	% Net Removal	100188.6994
																Itellioval	00.3-
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692												8211.8			7	
Volume = 515089	4747.635956										360718.7936			26627.2397			
Concentration Wetland Function Factor	260	260				-0.9										+ +	
Load								440.07265								T	168671861.
			15889263	1100,181618													
	1522651.359	801812.363						-396.06538	130041.7	290047.9031	23691015.39	9 35101.33859	4E+06	1748803.66		Total Load	
Wetland Function Value Net Yield			-14300336.7	-990.163456	-8713.438412	-1360484.588	-172486				21377236.64			1748803.66 1578007.06	1 153518	Final Load	28836143.7
Wetland Function Value	1522651.359 -1370386.223	801812.363 -721631.1267	-14300336.7	-990.163456	-8713.438412	-1360484.588	-172486								1 153518		28836143.7 82.9
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High	1522651.359 -1370386.223	801812.363 -721631.1267	-14300336.7	-990.163456	-8713.438412	-1360484.588	-172486								1 153518	Final Load % Net	
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions)	1522651.359 -1370386.223	801812.363 -721631.1267	7 -14300336.7 3 1588926.3	7 -990.163456 3 110.0181618	-8713.438412 968.1598236	-1360484.588 151164.9543	-172486 19165.16	44.007265		261720.4268	21377236.64	31673.17267	3E+06	5 1578007.06	1 153518 6 138524	Final Load % Net Removal	
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High	1522651.359 -1370386.223 152265.1359	801812.363 -721631.1261 80181.2363	7 -14300336.7 3 1588926.3	7 -990.163456 8 110.0181618	-8713.438412 8 968.1598236	-1360484.588 151164.9543 592.2	-172486 19165.16	44.007265	117341.2	261720.4268	21377236.64	31673.17267	3E+06	5 1578007.06	1 153518 6 138524 7 101.8 17293.	Final Load % Net Removal	
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below	1522651.359 -1370386.223 152265.1359	801812.363 -721631.1267 80181.2363	7 -14300336.7 3 1588926.3 3 3345 3 8763.233449	7 -990.163456 8 110.0181618 6 0.5 9 1.309900366	8 -8713.438412 8 968.1598236 5 2.2 5 5.763561611	-1360484.588 151164.9543 592.2	-172486 19165.16 19165.16 1.6 4.191681	44.007265	117341.2 1 82.8 1 216.9195	261720.4268 261720.4268 224.8 588.9312046	21377236.64 11450.7 29998.55224	31673.17267 7 6 1 15.71880439	3E+06 72.4 9 189.67	1578007.06 1578007.06 4 836 7 2191.98727	1 153518 6 138524 7 101.8 17293.3 3 266.7	Final Load % Net Removal	
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 45305 Concentration Wetland Function Factor	1522651.359 -1370386.223 152265.1359 496.1 1299.683143 260 -0.9	801812.363 -721631.1267 80181.2363 80.381.2363 80.381.2363 80.381.2363 210.3699988 266 -0.9	7 -14300336.7 3 1588926.3 3 3345 3 8763.233449 9 -0.9	-990.163458 110.0181618 110.0181618 5 0.5 9 1.309900368 9 -0.9	8 -8713.438412 968.1598236 5 - 2.2 5 5.763561611 260 9 -0.9	-1360484.588 151164.9543 151164.9543 592.2 1551.445994 260 -0.9	-172486 19165.16 19165.16 1.6 4.191681 260 -0.9	44.007265 0 0 0 260 -0.9	82.8 216.9195 130 0.2	261720.4268 224.8 588.9312046 130 0.2.2	21377236.64 11450.7 29998.55224 130 0.2	31673.17267 7 6 1 15.71880439 0 130 2 0.2	7 3E+06 72.4 9 189.67 0 130 2 0.2	4 836 7 2191.98727 0 13	1 153518 6 138524 7 101.8 17293. 3 266.7 0 130 2 0.2	Final Load % Net Removal	82.9
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 45305 Concentration Wetland Function Factor Load	1522651.359 -1370386.223 152265.1359 496.1 1299.683143 260 -0.9 416831.5184	801812.96; -721631.126; 80181.236; 	7 -14300336.7 1588926.3 3 3345 3 8763.233446 0 266 9 -0.9 2 2810524.953	990.163456 110.0181618 110.0181618 10.0181618 10.0181618 10.0181618 10.0181618 10.0181618 10.0181618 10.0181618 10.0181618	8 -8713.438412 968.1598236 5 - 2.2 6 -5.763561611 0 -0.9 1848.4768	-1360484.588 151164.9543 151164.9543 592.2 1551.445994 260 -0.9 497576.3459	1.6 4.191681 260 -0.9 1344.347	0 0 0 260 -0.9	82.8 216.9195 130 0.2 73926.14	224.8 588.9312046 130 0.2 200707.6731	21377236.64 11450.7 29998.55224 130 0.2 10223502.46	7 6 15.71880439 1 15.21880439 2 0.2 5356.966363	7 3E+06 72.4 9 189.67 0 130 2 0.2 8 64641	4 836 7 2191.98727 0 13 2 0 747028.958	1 153518 6 138524 7 101.8 17293. 3 266.7 0 130 2 0.2 4 90890	Final Load % Net Removal	82.9
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 45035 Concentration Wetland Function Factor Load Wetland Function Value Wetland Function Value	1522651.359 -1370386.223 152265.1359 496.1 1299.683143 260 -0.9 41681.35148.3665	801812.36: -721631.126: 80181.236: 80181.236: 210.3699988 2606: -0.0. 677469.403:	7 -14300386 7 3 1588926.3 1588926.3 3 3345 3 8763.23344 0 260 0 -0.9 2 281052472 457 2 28252472 457	990.163456 3 110.0181618 110.0181618 1 1.30990386 1 266 2 266 2 420.10836 420.70836 378.0975272	8 -8713.438412 968.1598236 968.1598236 5 -5.763561611 10 -260 1 -0.9 1 -0.9 1 -0.9 1 -0.9 1 -0.9	-1360484.588 151164.9543 151164.9543 592.2 1551.445994 260 -0.9 497576.3459 -447818.7113	1.6 4.191681 260 -0.9 1344.347 -1209.91	0 0 0 260 -0.9 0	82.8 216.9195 0 130 0 0.2 73926.14 14785.23	24.8 588.9312046 220707.6731 40141.53462	21377236.64 11450.7 29998.55224 130 0.2 10223502.46 2044700.491	31673.17267 7 6 15.71880439 1 130 2 0.2 5 5356.966363 1071.393273	7 3E+06 72.4 189.67 130 2 0.2 6 64641 12928	\$ 1578007.06 4 836 7 2191.98727 0 13 2 0 0 1 747028.955 3 149405.791	7 101.8 17293. 3 266.7 0 130 2 0.2 4 90890 9 18178	Final Load % Net Removal 3 Total Load	82.9 15111178.0
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 45305 Concentration Wetland Function Factor Load	1522651.359 -1370386.223 152265.1359 496.1 1299.683143 260 -0.9 416831.5184	801812.96; -721631.126; 80181.236; 	7 -14300386 7 3 1588926.3 1588926.3 3 3345 3 8763.23344 0 260 0 -0.9 2 281052472 457	990.163456 3 110.0181618 110.0181618 1 1.30990386 1 266 2 266 2 420.10836 420.70836 378.0975272	8 -8713.438412 968.1598236 968.1598236 5 -5.763561611 10 -260 1 -0.9 1 -0.9 1 -0.9 1 -0.9 1 -0.9	-1360484.588 151164.9543 151164.9543 592.2 1551.445994 260 -0.9 497576.3459 -447818.7113	1.6 4.191681 260 -0.9 1344.347 -1209.91	0 0 0 260 -0.9 0	82.8 216.9195 130 0.2 73926.14	24.8 588.9312046 220707.6731 40141.53462	21377236.64 11450.7 29998.55224 130 0.2 10223502.46	31673.17267 7 6 15.71880439 1 130 2 0.2 5 5356.966363 1071.393273	7 3E+06 72.4 189.67 130 2 0.2 6 64641 12928	4 836 7 2191.98727 0 13 2 0 747028.958	7 101.8 17293. 3 266.7 0 130 2 0.2 4 90890 9 18178	Final Load % Net Removal	

Table C17. High Watershed Functions for Sediments - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario A - Sedimei	nts														
Contour Range	Comment of the state of the sta	C	DI II 40	Riparian 43	River 45	004	M	Canalhan 24	0-4 20	C-#/ 27	C 20	C 20	C 40		Destruct I C Tete		
Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsn 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 4	Pasture LC Tota		
Conditions (No Flood)																	
275 ft	6.7		42	0.1	0	0.9	0	0	0.8	0	18	0	0.1	1 2.	9 1.7 73.	1	
/olume = 388	35.5622435			0.530779754	. 0				4.246238	0	95.54035568			15.3926128			
Concentration/Export Coefficient	35.3622433	150				150											
Wetland Function Factor	-0.1	-0.1				-0.1				130					1 1		
Load	6580.064134	-0.1		98.20991245		883.889212			827.7681		18624.78224					Total Load	73126.0144
																TOTAL LOAD	73120.0144
Wetland Function Value	-658.0064134 5922.057721	C		-9.820991245 88.3889212		-88.3889212 795.5002908			827.7681 749.2002		18624.78224		103.47				65937.0488
Net Yield	5922.057721	(3/123.34691	88.3889212	0	795.5002908	0	0	749.2002	U	16857.00382	- 0	93.65	2715.85061	5 1592.1	Final Load	65937.0488
WATERSHED FUNCTION																% Net Removal	9.8
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	171	10.8	375.7	0.1	1.1	170.8	0.2	0	5.2	6.5	1500.4	2.4	3.7	7 113.	1 9.9 2370.	R	
280 ft	43.3	1.4		0.1		9.8											
Volume Season 1 = 6707	483.7594905	30.55323098		0.282900287	3.111903155	483.1936899			14.71081		4244.635903			319.960224			
Volume Season 2 = 1098	161.3828921	5.217922607		0.372708758		36.52545825			7.081466		199.7718941	0.372708758		3 76.7780040			
Concentration/Export Coefficient	101.0020021	0.217022007	001.0010011	0.072700700		00.02010020	0.012100	-	7.001100		100.77 100 77	0.072700700	2.2000	70.7700010	7 10.020		
Season 1 Concentration/Export Coefficient	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Season 2	260	260	260	260	260	260	260	260	_						0 0	1	
Wetland Function Factor									1		-	0	1	,	1 1	+	
	-0.1	-0.1 5653.249051		-0.1 52.34489862	-0.1	-0.1 89405.08684			2858.723	2572 (211	824851.6311	4040 440707	20011	00477.0000		+	
Load Season 1 *	89509.77664				575.7938848									62177.2323		Tetal I as 1	4000000 00
Load Season 2 **	51758.3661	1673.480659	189820.5205	119.5343328	0	11714.36461	119.5343	0	2271.152	0	64070.40238	119.5343328	/17.21	24624.0725	5 5140	Total Load	1636365.93
Wetland Function Value (Both	-14126.81427	-732.672971	-38648.03046	-17.18792314	-57.57938848	-10111.94515	00.40-	1 .	5129.876	0.570 (888922.0335	4 400		86801.3049	40500	1	
Seasons) * Export Coefficients were reduced by 50% for upland and ag land covers	-14126.81427	-/32.6/29/1	-38648.03046	-17.18/92314	-57.5/938848	-10111.94515	-22.4224	0	5129.876	35/3.40416	888922.0335	1438.9451	2/51.3	3 86801.3049	4 10583		
** No Export for upland and ag land covers																	
Net Yield	127141.3285	6594.056739	347832.2741	154.6913083	518.2144963	91007.50631	201.8017	0	4630.567	3233.162319	803976.7074	1301.36391	2485.9	78418.6896	6 9550.3	Final Load	1477046.59
WATERSHED FUNCTION																% Net Removal	9.7
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1		0.1		121.9			2.6	0.1							
280 ft	43.3	1.4				9.8										6	
Volume Season 1 = 2190	231.6646835	8.07829605							6.775345		836.2339362			125.865064			
Volume Season 2 = 1098	161.3828921	5.217922607	591.8615071	0.372708758	0	36.52545825	0.372709	0	7.081466	0	199.7718941	0.372708758	2.2363	76.7780040	7 16.026		
Concentration/Export Coefficient Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Concentration/Export Coefficient																	
Season 2	260	260	260	260	260	260	260	260	0	0		0		1	0 0		
Wetland Function Factor	-0.1					-0.1				1	1	1	1	,	1 1		
Load Season 1 *	42864.80055			48.21687351		58776.36881			1322.033		163169.3821		4E7 63	3 24559.3055			
Load Season 2 **	51758.3661	1673.480659				11714.36461			2271.152		64070.40238					Total Load	767428.100
Wetland Function Value (Both	51756.3001	1073.400000	109020.5205	119.5343320	0	11714.30401	119.5343	0	22/1.152	U	64070.40236	119.5343326	/1/.21	24024.0725	5 5140	TOTAL LOAD	767426.100
	0.400.04000	040 0000700	00774 07700	40 77540000	50 00050000	7040 070040	40 7754	١ .	0500 405	50.04740054	007000 7044	070 070000		40400 0704	4 0055 0		
Seasons)	-9462.316665	-316.8203738		-16.77512063					3593.185		227239.7844			49183.3781			
Net Yield	85160.84999	2851.383364	276939.6986	150.9760857	477.3470478	63441.66008	150.9761	0	3240.706	46.02573616	205359.9495	245.658108	1059.7	44392.0958	7 8170	Final Load % Net	691687.00
WATERSHED FUNCTION																Removal	9.8
Scenario 4 - Extreme High Flow														1			
(existing conditions)								1					1				
300 and below	692					687				643.7			8211.8			7	
Volume = 515089	4747.635956	2500.055697		3.4303728		4713.332228					360718.7936			26627.2397			
Concentration	260	260		260		260				130	130	130	130	13	0 130		
Wetland Function Factor	-0.1	-0.1				-0.1				1	1	1	1	1	1 1		
Load	1522651.359													8744018.30		Total Load	168671861.
Wetland Function Value	-152265.1359					-151164.9543				1450239.515							
Net Yield	1370386.223	721631.1267	14300336.7	990.163456	8713.438412	1360484.588	172486.5	396.06538	586705.9	1308602.134	106886183.2	158365.8633	2E+07	7890035.3	3 692622	Final Load	152152018.
WATERSHED FUNCTION																% Net Removal	9.7
Scenario 5 - Moderate High																	
Flow (existing conditions)								<u> </u>	06.7		44455		76		7 404.0 47777	-	
290 and below	496.1	80.3		0.5		592.2				224.8		6				3	
	1299.683143								216.9195		29998.55224			2191.98727			
Volume = 45305	260	260	260	260	260	260			130	130	130	130	130	13	0 130		
Volume = 45305 Concentration	200																
Volume = 45305 Concentration	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1	1	1	1	1	1	1 1		
Volume = 45305 Concentration		-0.1 67469.4032				-0.1 497576.3459			73926.14		10223502.46					Total Load	15111178.0
Volume = 45305 Concentration Wetland Function Factor Load	-0.1		2810524.953	420.1083636	1848.4768	497576.3459	1344.347	0		200707.6731	10223502.46	5356.966363	64641	747028.959	4 90890	Total Load	15111178.0
Volume = 45305 Concentration Wetland Function Factor	-0.1 416831.5184 -41683.15184	67469.4032 -6746.94032	2 2810524.953 2 -281052.4953	420.1083636 -42.01083636	1848.4768 -184.84768	497576.3459 -49757.63459	1344.347 -134.435	0	73926.14 73926.14	200707.6731 200707.6731	10223502.46 10223502.46	5356.966363 5356.966363	64641 64641	747028.959 747028.959	4 90890 4 90890		
Volume = 45305 Concentration Wetland Function Factoroad Wetland Function Value	-0.1 416831.5184	67469.4032	2 2810524.953 2 -281052.4953	420.1083636 -42.01083636	1848.4768 -184.84768	497576.3459 -49757.63459	1344.347 -134.435	0	73926.14	200707.6731 200707.6731	10223502.46	5356.966363 5356.966363	64641 64641	747028.959	4 90890 4 90890	Total Load Final Load % Net	15111178.0 13749072.7

Table C18. Low Watershed Functions for Sediments - New Madrid Floodway.

New Madrid Floodway - Lo	w Retention Sc	enario B - Sedime	nts		I												
•																	
Contour Range Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Tota		
Conditions (No Flood)					_												
275 ft Volume = 388	6.7 35.5622435	0							0.8 4.246238		95.54035568			2.		1	
Concentration/Export Coefficient	35.5622435	150		0.530779754													
Wetland Function Factor	-0.1	-0.1				-0.1				1 130	1 130	1 130	1	, 13	1 1		
Load	6580.064134								827.7681	C	18624.78224	1 0	103.47	3000.65936		Total Load	73126.0144
Wetland Function Value	-658.0064134	(827.7681		18624.78224		103.47	3000.65936	1 1759		
Net Yield WATERSHED FUNCTION	5922.057721	0	37123.34691	88.3889212	0	795.5002908	S C	0	749.2002	: c	16857.00382	2 0	93.65	2715.85061	5 1592.1	Final Load % Net Removal	65937.0488 9.8
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	171																
280 ft Volume Season 1 = 6707	43.3 483.7594905	30.55323098							1.9		53.6	6.789606884		319.960224		6	
Volume Season 2 = 1098	161.3828921	5.217922607		0.262900267					7.081466		199.7718941			76.7780040			
Concentration/Export Coefficient Season 1	150			150	150				130								
Concentration/Export Coefficient																	
Season 2	260	260		260		260		260	0	0 0	0) (0		0 0		
Wetland Function Factor Load Season 1 *	-0.1 89509.77664	-0.1 5653.249051		-0.1 52.34489862					2995.512	37// 38001	864320.4033	1382542067	2131 4	65152.3844	1 1 4 5703	1	
Load Season 2 **	51758.3661	1673.480659		119.5343328					2995.512		64070.40238			24624.0725		Total Load	1679538.519
Wetland Function Value (Both																	
Seasons) * Export Coefficients were NOT reduced by 50% for upland and agland covers	-14126.81427	-732.672971	-38648.03046	-17.18792314	-57.57938848	-10111.94515	-22.4224	0	5266.664	3744.38991	928390.8057	1502.0783	2848.6	89776.4569	9 10843		
** No Export for upland and ag																	
Net Yield	127141.3285	6594.056739	347832.2741	154.6913083	518.2144963	91007.50631	201.8017	0	4767.356	3404.148069	843445.4796	1364.49711	2583.2	81393.8417	1 9810.8	Final Load	1520219.18
WATERSHED FUNCTION																% Net Removal	9.49
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	88.9	3.1		0.1													
280 ft	43.3															6	
Volume Season 1 = 2190 Volume Season 2 = 1098	231.6646835 161.3828921	8.07829605 5.217922607		0.260590195 0.372708758					6.775345 7.081466	0.260590195	836.2339362	0.781770585		125.865064 76.7780040			
Concentration/Export Coefficient	101.3020921	5.217922007	391.0013071	0.372700730		30.32343623	0.312108	- 0	7.001400	,	199.7710941	0.372700730	2.2303	70.7700040	7 10.020	_	
Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Concentration/Export Coefficient																	
Season 2	260	260				260			0	0	0 0	0	0)	0 0		
Wetland Function Factor	-0.1	-0.1		-0.1						1 50 47707054	17101001	1 100 100000	1 101.0	05000 0040	1 1		
Load Season 1 * Load Season 2 **	42864.80055 51758.3661	1494.723079		48.21687351 119.5343328		58776.36881 11714.36461			1390.427 2271.152		171610.817			25829.8612		Total Load	777445.2351
Wetland Function Value (Both	51/56.3001	1073.400003	169620.5205	119.5343320	U	11714.30401	119.5343	U	22/1.152		04070.40236	119.5343326	111.21	24024.0725	5 5140	TOTAL LOAD	111445.235
Seasons)	-9462.316665	-316.8203738	-30771.07762	-16.77512063	-53.03856086	-7049.073343	-16,7751	0	3661.58	53.47797351	235681.2194	279.9682533	1198.5	50453.9337	6 9257.8		
Net Yield	85160.84999	2851.383364	276939.6986	150.9760857	477.3470478				3309.101		213801.3844			45662.6515		Final Load % Net	701704.1384
WATERSHED FUNCTION																Removal	9.74
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	692 4747.635956										52577.2		8211.8			7	
Volume = 515089 Concentration	4747.635956 260					4713.332228								26627.2397		+ +	
Wetland Function Factor	-0.1	-0.1													1 1		
Load	1522651.359	801812.363		1100.181618	9681.598236					1450239.515						Total Load	168671861.
Wetland Function Value	-152265.1359	-80181.2363	-1588926.3	-110.0181618	-968.1598236	-151164.9543	-19165.2	-44.007265	650208.4	1450239.515	118455077	175506.6929	2E+07	8744018.30	5 767588		
Net Yield WATERSHED FUNCTION	1370386.223	721631.1267	14300336.7	990.163456	8713.438412	1360484.588	172486.5	396.06538	586705.9	1308602.134	106886183.2	158365.8633	2E+07	7890035.3	3 692622	% Net	152152018.
WATERSHED FUNCTION Scenario 5 - Moderate High																Removal	9.7
Flow (existing conditions)																	
290 and below	496.1	80.3		0.5	5 2.2				82.8	224.8	11450.7	7 6	72.4	836.	7 101.8 17293.	3	
Volume = 45305	1299.683143	210.3699988	8763.233449	1.309900366	5.763561611	1551.445994	4.191681	0	216.9195	588.9312046	29998.55224		189.67	2191.98727			
Concentration	260	260	260	260	260	260	260	260	130	130	130	130	130	13			
Wetland Function Factor	-0.1	-0.1						-0.1			10000	1	1	7476	1 1		
Motland Eupation Value	416831.5184								73926.14		10223502.46			747028.959		Total Load	15111178.0
Wetland Function Value Net Yield	-41683.15184 375148.3665	-6746.94032 60722.46288							73926.14 66969.14		10223502.46 9261395.488			747028.959 676728.025		Final Load	13749072.7
WATERSHED FUNCTION																Removal	9.0

Table C19. Low (no runoff reduction) Watershed Functions for Sediments - New Madrid Floodway.

Contour Range Cypri Scenario 1 - Existing Conditions (No Flood) 275 ft Volume = 644 Concentration/Export Coefficient Wetland Function Factor Load WatersHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Usual Season 1 = 1 Load Season 2 = 1 Vetland Function Value (Both Seasons)	15.32 90.28257687 1.5 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5 1.2 -0.8	Scrub/shrub marsh 19 0 0 1.50.8 0 0 0 0 1.51.51.51.11.1.	28.3 166.7752562 5 1.5 3 0.8 308.5834227 2-246.8667382 61.71668454 171.72 1670.969099 553.1024348	125.464498 1.6 9.6 232.1463275 -185.717062 46.42926551 71.34 3.4 3.1 161.1252912	0 0 0 1.5 -0.2 0 0 0	8.95 52.74341142 1.5 97.59087043 -29.27726113 68.3136093	5 0 2 0 5 1.5 3 -0.8 3 0 3 0	0 0 1.5 -0.2 0	6.77 39.89641 6.75	0 9.75 1 0	18.42 108.5512445 15 1 312.670435	0 0 9.75 1 0	0.04 0.2357 6.75 1 0.5454 0.5454		31 3.38 53 19.919 75 3.75 1 1 72 41.985 72 41.985	109.28	Total Load Final Load % Net Removal	698.1861452
Scenario 1 - Existing Conditions (No Flood) 275 ft Volume = 644 Concentration/Export Coefficient Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 2856 ft 2800 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 2 Volume Season 2 - 1692 Volume Season 1 = 1000 Volume Season 1 =	15.32 90.28257687 1.5 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5 1.2 -0.8	0 0 1.5.5 -0.8.8 0 0 0 0	28.3 166.7752562 5 1.5 3 0.8 308.5834227 2-246.8667382 61.71668454 171.72 1670.969099 553.1024348	21.25 125.4644945 1	0 0 0 1.5 -0.2 0 0 0	8.95 52.74341142 1.5 -0.3 97.59087043 -29.27726113 68.3136093	5 0 2 0 5 1.5 3 -0.8 3 0 3 0	0 0 1.5 -0.2 0	6.77 39.89641 6.75 1 92.31391 92.31391	0 0 9.75 1 0	18.42 108.5512445 15 1 312.670435 312.670435	0 0 9.75 1 0	0.04 0.2357 6.75 1 0.5454 0.5454	6. 40.132137 1.8 79.423806 79.423806	31 3.38 53 19.919 75 3.75 1 1 72 41.985 72 41.985	109.28	Total Load Final Load % Net	698.1861452
Conditions (No Flood) 275 ft Volume s 644 Concentration/Export Coefficient Welland Function Factor Load Welland Function Value Net Yield Welland Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project [2 seasons] 285 ft 800 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Cond Season 1 = 1000 Con	90.28257887 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5	0 1.5 0.8 0 0 0 0 0	166.7752562 5 1.5 0.8 308.533427 -246.8667382 0 61.71668454 0 739.84 1717.27 1670.969099 553.1024348	125.464498 1.6 9.6 232.1463275 -185.717062 46.42926551 71.34 3.4 3.1 161.1252912	0 1.5 -0.2 0 0 0 0	52.74341142 1.5 -0.3 97.59087043 -29.27726113 68.3136093	2 0 5 1.5 1.5 8 -0.8 8 0 8 0	0 1.5 -0.2 0	39.89641 6.75 1 92.31391 92.31391	0 9.75 1 0	108.5512445 15 1 312.670435 312.670435	0 9.75 1 0	0.2357 6.75 1 0.5454 0.5454	40.132137 1.8 79.423806 79.423806	33 19.919 75 3.75 1 1 72 41.985 72 41.985		Total Load Final Load % Net	698.1861452
275 ft Volume = 644 Concentration/Export Coefficient Wetland Function Factor Load Wetland Function Factor Load Water Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 226 ft 220 ft Volume Season 1 = 7238 Volume Season 2 = 1692 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Load Season 1 = 1 Load Season 1 = 1 Load Season 2 ** Wetland Function Factor Load Season 1 ** Load Season 2 ** Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	90.28257887 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5	0 1.5 0.8 0 0 0 0 0	166.7752562 5 1.5 0.8 308.533427 -246.8667382 0 61.71668454 0 739.84 1717.27 1670.969099 553.1024348	125.464498 1.6 9.6 232.1463275 -185.717062 46.42926551 71.34 3.4 3.1 161.1252912	0 1.5 -0.2 0 0 0 0	52.74341142 1.5 -0.3 97.59087043 -29.27726113 68.3136093	2 0 5 1.5 1.5 8 -0.8 8 0 8 0	0 1.5 -0.2 0	39.89641 6.75 1 92.31391 92.31391	0 9.75 1 0	108.5512445 15 1 312.670435 312.670435	0 9.75 1 0	0.2357 6.75 1 0.5454 0.5454	40.132137 1.8 79.423806 79.423806	33 19.919 75 3.75 1 1 72 41.985 72 41.985		Total Load Final Load % Net	698.186145
\(Volume = 644 \) \(Concentration \text{Export Coefficient} \) \(Wetland Function Factor Load \) \(Wetland Function Value \) \(Wetland Function Value \) \(Wetland Function Value \) \(Watersheld \) \(Value Season 2 - Authorized Project (2 seasons) \) \(285 \tau \) \(Volume Season 1 = 7298 \) \(Volume Season 2 = 1692 \) \(Concentration \text{Vexport Coefficient} \) \(Season 1 \) \(Concentration \text{Vexport Coefficient} \) \(Season 1 \) \(Concentration \text{Vexport Coefficient} \) \(Season 1 \) \(Concentration \text{Vexport Coefficient} \) \(Season 2 \) \(Concentration \text{Vexport Coefficient} \) \(Season 1 \) \(Concentration \text{Vexport Coefficient} \) \(Season 2 \) \(Concentration \text{Vexport Coefficient} \) \(Con	90.28257887 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5	0 1.5 0.8 0 0 0 0 0	166.7752562 5 1.5 0.8 308.533427 -246.8667382 0 61.71668454 0 739.84 1717.27 1670.969099 553.1024348	125.464498 1.6 9.6 232.1463275 -185.717062 46.42926551 71.34 3.4 3.1 161.1252912	0 1.5 -0.2 0 0 0 0	52.74341142 1.5 -0.3 97.59087043 -29.27726113 68.3136093	2 0 5 1.5 1.5 8 -0.8 8 0 8 0	0 1.5 -0.2 0	39.89641 6.75 1 92.31391 92.31391	0 9.75 1 0	108.5512445 15 1 312.670435 312.670435	0 9.75 1 0	0.2357 6.75 1 0.5454 0.5454	40.132137 1.8 79.423806 79.423806	33 19.919 75 3.75 1 1 72 41.985 72 41.985		Total Load Final Load % Net	698.1861452
Concentration/Export Coefficient Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft 280 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 2 Concentration/Export Coefficient Season 2 Load Season 1 Load Season 1 Load Season 1 ** Uetland Function Value (Both Seasons) Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	1.5 -0.8 167.0494006 -133.6395205 33.40988011 250.07 80.22 564.796773 258.3850298 1.5 1.2 -0.8	1.5.5 -0.8 0 0 0 0 0 0 0 0 0 0 0 0 1.5	5 1.5. 3 0.8. 308.5834227 5 -246.8667382 6 1.71668454 7 39.845 7 39.845 7 171.72 7 1670.969099 7 553.1024348	1.5 -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1.5 -0.2 0 0 0	1.5 -0.3 97.59087043 -29.27726113 68.3136093	5 1.5 3 -0.8 3 0 3 0 3 0	1.5 -0.2 0	6.75 1 92.31391 92.31391	9.75 1 0	15 1 312.670435 312.670435	9.75 1 0	6.75 1 0.5454 0.5454	79.423806 79.423806	75 3.75 1 1 72 41.985 72 41.985		Final Load % Net	698.1861452
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft Volume Sason 1 = 7298 Volume Sason 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Wetland Function Factor Load Season 1 * Unda Season 2 * Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	167.0494006 -133.6395205 -33.40988011 -250.07 -80.22 -564.7967703 -258.3850298 -1.5 -1.2 -0.8 -1.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0	0.8 0 0 0 0 0 0 0 0 0	3	-0.8 232.1463275 -185.717062 46.42926551 71.34 34.25 161.1252913	-0.2 0 0 0 0 0	97.59087043 -29.27726113 68.3136093	3 -0.8 3 0 3 0 3 0	-0.2 0	92.31391 92.31391	1 0 0	1 312.670435 312.670435	1 0 0	0.5454 0.5454	79.423806 79.423806	1 1 72 41.985 72 41.985		Final Load % Net	698.1861452
Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft 280 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Wetland Function Factor Load Season 1 Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	-133.6395205 33.40988011 250.07 80.22 564.7967703 258.3850298 1.5 -0.8 1045.04064	0 0 0 0 0 0 0	246.8667382 61.71668454 01.71668454 01.71688454 01.717969099 01.717969099 01.717969099 01.717969099	-185.717062 46.42926551 71.34 34.25 161.1252913	0 0	-29.27726113 68.3136093 112.71	B 0 B 0	0	92.31391	0	312.670435	0	0.5454	79.423806	72 41.985		Final Load % Net	1332.308723 698.1861452 47.60
Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft (2 seasons) 285 ft (2 seasons) 286 ft (2 seasons) 287 ft (2 seasons) 287 ft (2 seasons) 288 ft (2 seasons) Wetland Function Factor Load Season 1 ** Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	250.07 80.22 564.7967703 258.3850298 1.5 1.2 -0.8	0 0 0 0 0	246.8667382 61.71668454 01.71668454 01.71688454 01.717969099 01.717969099 01.717969099 01.717969099	-185.717062 46.42926551 71.34 34.25 161.1252913	0 0	68.3136093 112.71	3 0										% Net	
Net Yield WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft (2 seasons) 285 ft (2 seasons) 286 ft (2 seasons) 287 ft (2 seasons) 287 ft (2 seasons) 288 ft (2 seasons) Wetland Function Factor Load Season 1 ** Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	250.07 80.22 564.7967703 258.3850298 1.5 1.2 -0.8	0 0 0 0	739.84 1 171.72 1 1670.96909 553.1024348	46.42926551 71.34 34.25 161.1252913	0	68.3136093 112.71	3 0			0		0					% Net	
WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft 280 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 1 Wetland Function Factor Load Season 1 = 10ad Season 1 Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	250.07 80.22 564.7967703 258.3850298 1.5 1.2 -0.8	0 0 0 0 1.5) 171.72) 1670.969099) 553.1024348	34.25 161.1252913	0	112.71											% Net	
2 seasons	80.22 564.7967703 258.3850298 1.5 1.2 -0.8 1045.04064	0 0 0 0 1.5) 171.72) 1670.969099) 553.1024348	34.25 161.1252913	0												\vdash	
285 ft 280 ft Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration*Export Coefficient Season 1 Concentration*Export Coefficient Season 1 Load Season 1* Ucad Season 1* Wetland Function Value (Both Seasons) Wetland Function Value (Both Seasons)	80.22 564.7967703 258.3850298 1.5 1.2 -0.8 1045.04064	0 0 0 0 1.5) 171.72) 1670.969099) 553.1024348	34.25 161.1252913	0										1			
280 ft Volume Sasson 1 = 7298 Volume Sasson 2 = 1692 Concentration/Export Coefficient Sasson 1 Concentration/Export Coefficient Sasson 2 Wetland Function Factor Load Sasson 1 Wetland Function Value (Both Season 9 Wetland Function Value (Both Season 9)	80.22 564.7967703 258.3850298 1.5 1.2 -0.8 1045.04064	0 0 0 0 1.5) 171.72) 1670.969099) 553.1024348	34.25 161.1252913	0		1 0	0	62.97	2.45	1743.91	0.01	1.22	104	02 52.73	2224 27		
Volume Season 1 = 7298 Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Load Season 1 Wetland Function Factor Load Season 2 Wetland Function Value (Both Seasons)	564.7967703 258.3850298 1.5 1.2 -0.8 1045.04064	0 0) 1670.969099 553.1024348	161.1252913							153.73	0.01		25		525.31		
Volume Season 2 = 1692 Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Wetland Function Factor Load Season 1 * Load Season 2 * Wetland Function Value (Both Seasons) Seasons)	258.3850298 1.5 1.2 -0.8 1045.04064	1.5	553.1024348			254.5616987			142.2212		3938.716102			438.20478				
Concentration/Export Coefficient Season 1 Concentration/Export Coefficient Season 2 Wetland Function Factor Load Season 1 Wetland Function Value (Both Seasons)	1.5 1.2 -0.8 1045.04064	1.5		110.31//1/2		99.49530753		0			495.1574499	0.022565547		80.717138				
Season 1 Concentration/Export Coefficient Season 2 Wetland Function Factor Load Season 1 Load Season 2 Wetland Function Value (Both Seasons)	1.2 -0.8 1045.04064		1.5		U	99.49530753	0	U	35.0762	U	495.1574499	U	1.1918	00.717130	10 00.007			
Season 2 Wetland Function Factor Load Season 1 * Load Season 2 ** Wetland Function Value (Both Seasons)	-0.8 1045.04064	4.0	1.0	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.8	75 3.75			
Wetland Function Factor Load Season 1 * Load Season 2 ** Wetland Function Value (Both Seasons)	-0.8 1045.04064							4.0	_	_		_			0 -]		
Load Season 1 * Load Season 2 ** Wetland Function Value (Both Seasons)	1045.04064					1.2		1.2	0	0	0	0	0		0 0			
Load Season 2 ** Wetland Function Value (Both Seasons)		-0.8				-0.3		-0.2	240.4505		40500 222	1 0001510513	1 0 70 4	004 4005	1 1	1		
Wetland Function Value (Both Seasons)	000 470	0				471.0142382			349.1595		12580.98954							04507.05
Seasons)	382.470823	0	818.7221356	163.2962564	0	147.276536	0	0	51.92106	0	732.949883	0	1.7641	119.48041	12 86.678		Total Load	21507.36771
						405 4			404	45	13313.93942			4005		1		Į.
reduced by 50% for upland and ag land covers	-1142.00917	0	-3128.406323	-369.1404618	0	-185.4872323	3 0	0	401.0806	15.07216711	13313.93942	0.061519049	8.5288	1003.9009	28 347.05			
** No Export for upland and ag land covers																		
Net Yield	285.5022926	0	782.1015809	92.28511545	0	432.803542	2 0	0	369.5734	14.04831396	12511.86576	0.057340057	7.8426	910.87207	57 316.34		Final Load	15723.29687
WATERSHED FUNCTION																	% Net Removal	26.89
Scenario 3 - Avoid and																		
Minimize (2 seasons)																		
282 ft	101.09					44.74			16.58		292.73			41		825.36		
280 ft	80.22					30.89					153.73	0		25.		525.31		
Volume Season 1 = 3080	377.2380537	0				166.9564796	0		61.87167		1092.381991			153.74624				
Volume Season 2 = 1692	258.3850298	0	553.1024348	110.3177172	0	99.49530753	3 0	0	35.0762	0	495.1574499	0	1.1918	80.717138	15 58.557		\vdash	
Concentration/Export Coefficient																	ı l	
Season 1 Concentration/Export Coefficient	1.5	1.5			1.5	1.5		1.5	6.75	9.75	15	9.75	6.75	1.8	75 3.75			
Season 2	1.2	1.2		1.2	1.2	1.2		1.2	0	0	0	0	0		0 0			
Wetland Function Factor	-0.8	-0.8				-0.3		-0.2	1		1				1 1			
Load Season 1 *	698.0016846	0				308.9187394			137.1268		2909.737668			300.10744				
Load Season 2 **	382.470823	0	818.7221356	163.2962564	0	147.276536	6 0	0	51.92106	0	732.949883	0	1.7641	119.48041	12 86.678		Total Load	9148.274462
Wetland Function Value (Both																		
Seasons)	-864.378006	0	-2082.162951	-391.7472208	0	-136.8585826			189.0479		3642.687551			419.58785				
Net Yield	216.0945015	0	520.5407378	97.9368052	0	319.3366928	3 0	0	172.4077	0	3367.269669	0	5.0745	379.19222	32 237.83		Final Load % Net	5315.686459
WATERSHED FUNCTION																	Removal	41.89
Scenario 4 - Extreme High Flow (existing conditions)																		
300 and below	686.78	0				274.41		0					7497.1			54998.3		
Volume = 310381	3875.819129	0				1548.623325			2349.318					21117.847	32 994.44			
Concentration	1.2	1.2		1.2	1.2	1.2		1.2	6.75		15	9.75		1.8				
Wetland Function Factor	-0.8	-0.8	-0.8	-0.8	-0.2	-0.3	-0.8	-0.2		1	1	1	1		1 1			
Load	5737.127004	0				2292.327996			4614.735		516995.9557			34098.874			Total Load	704859.38
Wetland Function Value	-4589.701603	0		-2486.717677		-687.6983988			4614.735		516995.9557	300.3534375						
Net Yield	1147.425401	0	8529.789146	621.6794193	83.93758137	1604.629597	138.6374	0	4266.981		487054.4648	279.9537984	76845	30972.934	13 1592.2		Final Load	621915.383
WATERSHED FUNCTION																	% Net Removal	11.77
Scenario 5 - Moderate High Flow (existing conditions)																		
290 and below	485.21	0	2316.24	147.63	0	144.21	2.05	0	90	54.48	5842.45	1.44	78.44	590	25 102.57	9853 97		
Volume = 34372	1692.479084	0				503.0242755			313,9324		20379.26758	5.022917667					+	
																	+	
Concentration	1.2	1.2				1.2		1.2						1.8				
Wetland Function Factor	-0.8	-0.8				-0.3		-0.2			05000 74000			0400 50 :-	1 1		T-4-17	00040 505
Load	2505.268469	0				744.5946415			710.5492		65632.71826	13.11709156					Total Load	86943.58085
Wetland Function Value	-2004.214776	0				-223.3783924			710.5492		65632.71826	13.11709156					Final I	74705.007
Net Yield	501.0536939	0	2391.872814	152.4506025	0	521.216249	2.116939	0	664.0798	468.1338221	62616.1057	12.3735812	5/8.78	3185.3394	97 632.3		Final Load	71725.82459
WATERSHED FUNCTION																	% Net Removal	17.50

Table C20. Expected Watershed Functions for Nitrogen - St. Johns Bayou.

St. Johns Bayou - High Re	tention Scenario	- mitrogen		-				-							+ + -	+ +	
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood) 275 ft	15.32	(28.3	21.29	9 0	8.95			6.77	0	18.42	0	0.04	6.8	1 3.38 109.28		
Volume = 644	90.28257687								39.89641		108.5512445			40.1321376		9	
Concentration/Export Coefficient	1.5	1.5				1.5				9.75							
Wetland Function Factor	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	0.2	0.2			0.2	0.:	2 0.2		
Load	167.0494006	C							92.31391		312.670435			79.4238067		Total Load	1332.30872
Wetland Function Value	-150.3444605	C							18.46278		62.53408699		0.1091				
Net Yield	16.70494006		30.85834227	23.21463275	5 0	9.759087043	C	0	16.98638	0	58.51705049	0	0.1004	14.3996354	7 7.6599	Final Load	178.200343
WATERSHED FUNCTION																% Net Removal	86.63
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	250.07		739.84	71.34	1 0	112.71	C	0	62.97	2.45	1743.91	0.01	1.22	194.0	2 52.73 3231.27	7	
280 ft	80.22	(1	
Volume Season 1 = 7298	564.7967703	C		161.1252913					142.2212		3938.716102			438.204780			
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	2 0	99.49530753	C	0	35.0762	0	495.1574499	0	1.1918	80.7171384	5 58.557		
Concentration/Export Coefficient Season 1	1.5	1.5	5 1.5	5 1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Concentration/Export Coefficient														.1	_ _		
Season 2	1.2	1.2				1.2	1.2		0	0	0		1 0		0 0	-	
Wetland Function Factor	-0.9					-0.9 471.0142382										1	
Load Season 1 * Load Season 2 **	1045.04064 382.470823	0							349.1595 51.92106		12580.98954 732.949883			884.420514 119.480414		Total Load	21507.3677
Wetland Function Value (Both	302.410023		010.7221300	103.2802504		177.270030			31.32100	0	102.343003	-	1.7041	110.400414	20.070	rotal LUdu	21301.3011
Seasons)	-1284.760317		-3519.457114	-415.2830195	0	-556.4616968		0	80.21611	3.014433422	2662.787884	0.01230381	1.7058	200.780185	7 69.41		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	142.7511463	C	391.0507904	46.14255772	2 0	61.82907742	C	0	73.91467	2.809662792	2502.373152	0.011468011	1.5685	182.174415	1 63.269	Final Load	3467.8944
WATERSHED FUNCTION																% Net Removal	83.8
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	101.09		258.37	47.27	7 0	44.74		0	16.58	0	292.73	0	0.46	41.:	2 22.92 825.36	3	
280 ft	80.22	0	171.72	34.25	5 0	30.89	C	0	10.89	0	153.73	0	0.37	25.0	6 18.18 525.3	1	
Volume Season 1 = 3080	377.2380537	(61.87167		1092.381991			153.746244			
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	2 0	99.49530753	C	0	35.0762	0	495.1574499	0	1.1918	80.7171384	5 58.557		
Concentration/Export Coefficient																	
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75		
Concentration/Export Coefficient											_	_	_				
Season 2 Wetland Function Factor	1.2	1.2				-0.9	1.2		0.2	0.2	0.2	0.2	0.2	0.:	2 0.2		
Load Season 1 *	698.0016846	-0.9							137.1268		2909.737668			300.107444			
Load Season 2 **	382.470823						- 0		51.92106		659.6548947			107.532372		Total Load	9054.18721
Wetland Function Value (Both	302.470023		010.7221330	100.230230-		147.270000		_	31.32100		053.0540347		1.5077	107.552572	70.01	Total Load	3034.10721
Seasons)	-972.4252568		-2342,43332	-440.7156234	1 0	-410.5757479		0	37.80958	0	713.8785126		1.0784	81.5279633	8 50.732		
Net Yield	108.0472508	C	260.2703689	48.9684026	0			0	34.48154		660.260836			73.6877977		Final Load	1278.325389
WATERSHED FUNCTION																% Net Removal	85.8
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	686.78		5105.42	372.1	1 12.56	274.41	82.98	0	416.29	765.66	35842.36	24.42	7497.1	374	2 176.21 54998.3	3	
Volume = 310381	3875.819129							0	2349.318	4320.975675	202275.1165		42309	21117.8473	2 994.44		
Concentration	1.2	1.2	2 1.2			1.2											
Wetland Function Factor	-0.9	-0.9	-0.9	-0.9	-0.9				0.2	0.2					2 0.2		
Load	5737.127004	(4614.735		516995.9557					Total Load	704859.3
Wetland Function Value	-5163.414303							0	922.947	1883.444824	103399.1911			6819.77484			
Net Yield	573.7127004	C	4264.894573	310.8397097	10.49219767	229.2327996	69.31868	0	853.3961	1755.523549	97410.89296	55.99075968	15369	6194.58688	6 318.44	% Net	127416.3476 81.93
WATERSHED FUNCTION Scenario 5 - Moderate High																Removal	81.9
Flow (existing conditions)											1						
	485.21		2316.24	147.63	3 0	144.21	2.05	n	90	54.48	5842.45	1.44	78.44	589 2	5 102.57 9853.97	7	
	1692.479084								313.9324		20379.26758			2055.38488			
290 and below Volume = 34372								1.2	6.75	9.75						1	
Volume = 34372 Concentration	1.2	1.2	2 1.2														
Volume = 34372																	
Volume = 34372 Concentration Wetland Function Factor Load	1.2 -0.9 2505.268469	-0.9 C	-0.9 11959.36407	-0.9 762.2530124	-0.9 4 0	-0.9 744.5946415	-0.9 10.5847	-0.9	0.2 710.5492	0.2 496.2632972	0.2 65632.71826	0.2 13.11709156	0.2 619.28	0.3489.58496	2 0.2 7 685.26	Total Load	86943.5808
Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value	1.2 -0.9 2505.268469 -2254.741623	-0.9 C	-0.9 11959.36407 -10763.42766	7 762.2530124 6 -686.0277112	-0.9 4 0 2 0	-0.9 744.5946415 -670.1351773	-0.9 10.5847 -9.52623	-0.9 0	0.2 710.5492 142.1098	0.2 496.2632972 99.25265943	0.2 65632.71826 13126.54365	0.2 13.11709156 2.623418311	0.2 619.28 123.86	0.3 3489.58496 6 697.916993	2 0.2 7 685.26 4 137.05		
Volume = 34372 Concentration Wetland Function Factor Load	1.2 -0.9 2505.268469	-0.9 C	-0.9 11959.36407 -10763.42766	7 762.2530124 6 -686.0277112	-0.9 4 0 2 0	-0.9 744.5946415 -670.1351773	-0.9 10.5847 -9.52623	-0.9 0	0.2 710.5492	0.2 496.2632972 99.25265943	0.2 65632.71826	0.2 13.11709156 2.623418311	0.2 619.28 123.86	0.3489.58496	2 0.2 7 685.26 4 137.05	Total Load Final Load Net	86943.5808 15229.6293

Table C21. High Watershed Functions for Nitrogen - St. Johns Bayou.

on comic Dayon Zom Hote	ention Scenario	- Nitrogen															+	
Contour Range C	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 4	1 Pasture	LC Total	-+	
Scenario 1 - Existing	, p. 1000																	
Conditions (No Flood)																		
275 ft	15.32			21.29	0	8.95	0			0		0				109.28		
Volume = 644	90.28257687					52.74341142			39.89641		108.5512445			40.1321376				
Concentration/Export Coefficient	1.5					1.5				9.75			6.75	1.87				
Wetland Function Factor	-0.1					-0.1				1	1		1		1 1			
Load	167.0494006					97.59087043			92.31391	0				79.4238067			Total Load	1332.308723
Wetland Function Value	-16.70494006			-23.21463275		-9.759087043			92.31391	0				79.4238067				
Net Yield	150.3444605	(277.7250804	208.9316948	0	87.83178339	0	0	84.9319	0	292.5852525	0	0.5018	71.9981773	38.3		Final Load	1213.149725
WATERSHED FUNCTION																	% Net Removal	8.94
Scenario 2 - Authorized Project (2 seasons)																		
285 ft	250.07	(739.84	71.34	0	112.71	0	0	62.97	2.45	1743.91	0.01	1.22	194.0	2 52.73	3231.27		
280 ft	80.22		171.72	34.25	0	30.89	0	0	10.89	0	153.73	0		25.0		525.31		
Volume Season 1 = 7298	564.7967703	(1670.969099	161.1252913	0	254.5616987	0	0	142.2212	5.533458981	3938.716102	0.022585547	2.7554	438.204780	119.09)		
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	0	99.49530753	0	0	35.0762	0	495.1574499	0	1.1918	80.7171384	58.557	1		
Concentration/Export Coefficient																		
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	75 3.75	5		
Concentration/Export Coefficient																		
Season 2	1.2					1.2		1.2	0	0	0	0	0		0 0			
Wetland Function Factor	-0.1	-0.1				-0.1		-0.1	1		1	1	1		1 1			
Load Season 1 *	1045.04064					471.0142382			349.1595		12580.98954							
Load Season 2 **	382.470823	(818.7221356	163.2962564	0	147.276536	0	0	51.92106	0	732.949883	0	1.7641	119.480414	2 86.678	3	Total Load	21507.36771
Wetland Function Value (Both																		
Seasons)	-142.7511463	(-391.0507904	-46.14255772	0	-61.82907742	0	0	401.0806	15.07216711	13313.93942	0.061519049	8.5288	1003.90092	8 347.05	i i		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																		
land covers																		
Net Yield	1284.760317		3519.457114	415.2830195	. 0	556.4616968	0	0	369.5734	14.04831396	12511.86576	0.057340057	7.8426	910.872075	7 316.34		Final Load	19906.56649
WATERSHED FUNCTION																	% Net Removal	7.44
Scenario 3 - Avoid and																		
Minimize (2 seasons)	404.00		258.37	47.27		44.74			40.50		000 70		0.40		0 00 00	005.00	+	
282 ft 280 ft	101.09					30.89			16.58 10.89					41 25.0		825.36 525.31	+	
Volume Season 1 = 3080	377.2380537					166.9564796			61.87167		1092.381991			153.746244				
Volume Season 2 = 1692	258.3850298					99.49530753	0		35.0762		495.1574499			80.7171384			+	
Concentration/Export Coefficient	256.3650296		553.1024348	110.3177172	U	99.49530753	U	U	35.0762	U	495.1574499	U	1.1916	60.7171364	50.557		+	
Season 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	6.75	9.75	15	9.75	6.75	1.87	5 3.75			
Concentration/Export Coefficient	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	0.75	3.73	13	3.73	0.73	1.01	3 3.73	1	+	
Season 2	1.2	1.5	1.2	1.3	1 2	1.2	1.2	1.2	٥	0		0	0		0 0			
Wetland Function Factor	-0.1					-0.1			1	1	1	1	1		1 1		+	
Load Season 1 *	698.0016846					308.9187394		-0.1	137.1268		2909.737668			300.107444	12 175 65		+	
Load Season 2 **	382.470823					147.276536			51.92106					119.480414			Total Load	9148.274462
Wetland Function Value (Both	302.470023		010.7221330	100.230230-		147.270000	- 0	- 0	31.32100		732.343003		1.7041	113.400414	12 00.070		Otal Load	3140.274402
Seasons)	-108.0472508		-260.2703689	-48.9684026	اه	-45.61952755	٥	0	189.0479	0	3642.687551	0	5 5686	419.587858	3 262 33			
Net Yield	972.4252568					410.5757479			172.4077		3367.269669			379.192226			Final Load	8327.92767
THE TIOL	072.1202000		2012.10002	110.710020		110.0101110	_		172.1077		0001.200000		0.07 10	O/ O. TOLLEL	207.00		% Net	0027.02707
WATERSHED FUNCTION																	Removal	8.97
Scenario 4 - Extreme High Flow																	T	
(existing conditions)																		
300 and below	686.78					274.41		0					7497.1			54998.3		
Volume = 310381	3875.819129			2099.933454		1548.623325			2349.318					21117.8473				
Concentration	1.2					1.2		1.2		9.75	15	9.75	6.75	1.87	75 3.75	5		
Wetland Function Factor	-0.1					-0.1		-0.1		1	1	1	1		1 1			
Load	5737.127004					2292.327996			4614.735		516995.9557			34098.8742			Total Load	704859.38
Wetland Function Value	-573.7127004					-229.2327996			4614.735		516995.9557	300.3534375						
Net Yield	5163.414303	(38384.05115	2797.557387	94.42977904	2063.095196	623.8681	0	4266.981	8777.617744	487054.4648	279.9537984	76845	30972.9344	1592.2		Final Load	658915.7004
WATERSHED FUNCTION																	% Net Removal	6.52
Scenario 5 - Moderate High Flow (existing conditions)																		
290 and below	485.21		2316.24	147.63	0	144.21	2.05	0	90	54.48	5842.45	1.44	78.44	580 1	5 102.57	9853 97		
LOO GITG DOTOW	1692,479084			514.953705		503.0242755			313.9324		20379.26758			2055.38488				
Volume = 34372	1.2					1.2		1.2						1.87				
															J 3./5			
Concentration		_ ^ 4																
Volume = 34372 Concentration Wetland Function Factor	-0.1					-0.1					65600 71006				1 1		otal Load	06043 50005
Concentration Wetland Function Factor Load	-0.1 2505.268469	(11959.36407	762.2530124	0	744.5946415	10.5847	0	710.5492	496.2632972	65632.71826	13.11709156	619.28	3489.58496	685.26	3	Total Load	86943.58085
Concentration Wetland Function Factor Load Wetland Function Value	-0.1 2505.268469 -250.5268469	0	11959.36407 -1195.936407	762.2530124 -76.22530124	0	744.5946415 -74.45946415	10.5847 -1.05847	0	710.5492 710.5492	496.2632972 496.2632972	65632.71826 65632.71826	13.11709156 13.11709156	619.28 619.28	3489.58496 3489.58496	685.26 67 685.26	i -		
Concentration Wetland Function Factor Load	-0.1 2505.268469	0	11959.36407 -1195.936407	762.2530124 -76.22530124	0	744.5946415	10.5847 -1.05847	0	710.5492	496.2632972 496.2632972	65632.71826	13.11709156 13.11709156	619.28 619.28	3489.58496	685.26 67 685.26	6 6	Final Load Net	86943.58085 82540.97269

Table C22. Low Watershed Functions for Nitrogen- St. Johns Bayou.

St. Johns Bayou - Expecte	ed Concentration	ns Runoff Coeffici	ients and Function	Factors - Phosph	orus												
•																	
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood)																	
275 ft	15.32														1 3.38 109.28	3	
Volume = 644	90.28257687								39.89641		108.5512445			40.1321376			
Concentration/Export Coefficient	0.21					0.21						0.5	1.1	1 0.	1 0.04		
Wetland Function Factor	-0.4					-0.2											
Load	23.38691608								13.34862		36.31928689		0.0789			Total Load	178.3845524
Wetland Function Value	-9.354766432	2 (-16.25024293					13.34862		36.31928689		0.0789				
Net Yield	14.03214965	i (25.92100751	16.25024293	0	10.93017749	0	0	12.31514	1 (33.50736134	1 0	0.0728	9.63189369	3 4.6985	Final Load	127.3592476
WATERSHED FUNCTION																% Net Removal	28.60
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	250.07		739.84	71.34	0	112.71	0	0	62.97	2.45	1743.91	0.01	1.22	194.0	2 52.73 3231.27	7	
280 ft	80.22			34.25													
Volume Season 1 = 7298	564.7967703			161.1252913					142.2212		3938.716102			438.204780	2 119.09		
Volume Season 2 = 1692	258.3850298			110.3177172							495.1574499			80.7171384			
Concentration/Export Coefficient	230.3030230	1	333.1024040	110.5177172		33.43330730	, ,	-	33.0702		1 400.1074400	, ,	1.1310	00.7171304	3 30.337		
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15		,	ء ا						
												0		, ,	1 1	+ +	
Wetland Function Factor	-0.4 146.3056896			-0.5		-0.2 65.94199335					1 4400 4500 47	0.000000000	0.0055	117.439130		+ +	
Load Season 1 *									50.85734		1408.458347					Total I as 1	0040 0400 1
Load Season 2 **	47.80885287	(102.340267	20.41203205	0	18.40956701	- 0	0	6.490132	(91.61873537	0	0.2205	14.9350517	1 10.835	Total Load	2610.610942
Wetland Function Value (Both Seasons)	-77.64581699	,	-214.0761098	-31.07506848	0	-16.87031207			57.34747	4 004075 :	1500.077082	0.000000		132.374182	40.440		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag	-77.04361695		-214.0761096	-31.0/300046	0	-16.87031207		0	57.34747	1.001273130	1500.077082	0.006662339	1.2050	132.374162	4 42.112		
land covers																	
Net Yield	116.4687255	i (321.1141647	31.07506848	0	67.48124828	0	0	53.01434	1.537933717	1388.886195	0.00627728	1.1124	119.529363	6 37.943	Final Load	2138.168954
WATERSHED FUNCTION																% Net Removal	18.10
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	101.09			47.27		44.74											
280 ft	80.22												0.37			1	
Volume Season 1 = 3080	377.2380537	' (176.3976931					61.87167		1092.381991			153.746244			
Volume Season 2 = 1692	258.3850298	3	553.1024348	110.3177172	0	99.49530753	0	0	35.0762	2	495.1574499	9 0	1.1918	80.7171384	5 58.557		
Concentration/Export Coefficient																	
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	1 0.	1 0.04		
Concentration/Export Coefficient																	
Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	. 0) (0) () (0 0		
Wetland Function Factor	-0.4					-0.2					1	1 1		í	1 1		
Load Season 1 *	97.72023584								19.71778		348.1293581		0.5471				
Load Season 2 **	47.80885287			20.41203205					6.490132		91.61873537		0.2205			Total Load	1180.88647
Wetland Function Value (Both	47.00000207		102.340207	20.41203200	, ,	10.40330701		-	0.430132		31.01073337		0.2200	14.3330317	10.000	Total Load	1100.00047
Seasons)	-58.21163548	ا ا	-140.8390738	-33.0531599		-12.3316381			26.20791		439,7480934		0.7676	55.595360	7 22 176		
Net Yield	87.31745323	,					2 0		23.95616		402.2890148			50.1191928		Final Load	887.8983792
WATERSHED FUNCTION	67.31743323		211.2360107	33.0031395		49.32033242			23.93010		402.2690146	, ,	0.70	30.1191926	3 29.011	% Net Removal	24.81
Scenario 4 - Extreme High Flow																	
(existing conditions)														1			
300 and below	686.78		5105.42	372.1	12.56	274.41	82.98	0	416.29	765.66	35842.36	24.42	7497.	374	2 176.21 54998.3	3	
Volume = 310381	3875.819129			2099.933454					2349.318		202275.1165			21117.8473			
Concentration	0.15	0.15				0.15										1	
Wetland Function Factor	-0.4					-0.2				1	1	1	1	1	1 1	1	
Load	717.1408755								620.013	954.4392696	53382.80707	30.44093588	11166	4058.8634	7 186.85	Total Load	77222.49726
Wetland Function Value	-286.8563502			-194.2748185					620.013		53382.80707					. Star Lodd	
Net Yield	430.2845253								576.5437		49640.1207					Final Load	69454.99113
WATERSHED FUNCTION	100.2010200		0100.07000	104.2740100	11.00072200	220.2027000	01.00001		010.0101	074.4004720	10010.1201	27.0000000	1000	0000:12000	100.10	% Net Removal	10.06
Scenario 5 - Moderate High																	
Flow (existing conditions)			<u> </u>														
290 and below	485.21	(144.21									5 102.57 9853.97	7	
Volume = 34372	1692.479084	(8079.363067	514.953705	0	503.0242755	7.150681	0	313.9324	190.0337184	20379.26758		273.61	2055.38488	5 357.78		
Concentration	0.15	0.15	0.15	0.15	0.15	0.15	0.15				1.1	0.5	1.1	0.	1 0.04		
Wetland Function Factor	-0.4					-0.2									1 1		
Load	313.1585587			95.28162655					98.15205		6371.649158			404.153785		Total Load	9004.66470
Wetland Function Value	-125.2634235	i 0		-47.64081328	0				98.15205		6371.649158			404.153785		7 2230	
Net Yield	187.8951352			47.64081328	1 0	74.45946415			92.34337		5994.572589			366.123101		Final Load	7846.300511
	107.0001002		300.0023031	47.04301320		. 1.10010410	5.7 00002		32.0.007	**E.0000073	2301.072000	1.12133313	55.702	300.120101	. 51,24	% Net	
WATERSHED FUNCTION									1				1	1		Removal	12.86

Table C23. Expected Watershed Functions for Phosphorus- St. Johns Bayou.

Volume Season 2 = 1692	0 0.04 0 0.2357 0.5 1.1 0.2 0.2 0 0.0789 0 0.0158 0 0.0146 0.01 1.22 0 0 0.37 22585347 2.7554 0 1.1918 0.5 1.1 0 0 0.2	6.81 40.13213763 1 0.1 0.2 10.6714818 2 2.134296361 1 1.926378739 0 194.02 2.5.06 438.2047802 1 80.71713845 0 0.1	3.38 109.2 3.38 109.299 0.04 0.2 2.2145 1.0429 0.9397 52.73 3231.2 18.18 525.7 3231.2 19.09 8.557 0.04	Total Load Final Load % Net Removal	178.384552- 23.3203143 86.9:
Scenario 1 - Existing	0 0.04 0 0.2357 0.5 1.1 0.2 0.2 0 0.0789 0 0.0758 0 0.0146 0 0.01 1.22 0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2	6.81 40.13213763 1 0.1 0.2 10.6714818 2 2.134296361 1 1.926378739 0 194.02 2.5.06 438.2047802 1 80.71713845 0 0.1	3.38 109.2 19.919 0.04 0.2 5.2145 0.0429 0.9397 552.73 3231.2 18.18 525.3 119.09 88.557	Total Load Final Load % Net Removal	23.3203143
175 ft	0 02357 0.5 1.1 0.2 0.2 0 0.0789 0 0.0158 0 0.0146 0 0.0146 0 0.37 22585547 2.7554 0 1.1918 0 5 1.1 0 0 0.02 0.2 0.2 0.2	40.13213763 1 0.2 10.6714818 2 2.134298361 1 1.926378739 0 1.926378739 0 1.94.02 25.06 438.2047802 1 80.71713845 5	9.919 0.04 0.2 0.2 5.2145 0.0429 0.9397 52.73 3231.2 18.18 525.3 19.09 58.557	Total Load Final Load % Net Removal	23.320314
Volume = 644 90.2827887 0 166.7752562 125.4464949 0 82.74341142 0 0 39.89641 0 108.5512445	0 02357 0.5 1.1 0.2 0.2 0 0.0789 0 0.0158 0 0.0146 0 0.0146 0 0.37 22585547 2.7554 0 1.1918 0 5 1.1 0 0 0.02 0.2 0.2 0.2	40.13213763 1 0.2 10.6714818 2 2.134298361 1 1.926378739 0 1.926378739 0 1.94.02 25.06 438.2047802 1 80.71713845 5	9.919 0.04 0.2 0.2 5.2145 0.0429 0.9397 52.73 3231.2 18.18 525.3 19.09 58.557	Total Load Final Load % Net Removal	23.320314
OzerostrationExport Coefficient	0.5 1.1 0.2 0.2 0.0789 0.0158 0.0146 0.0146 0.01 1.22 0.037 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.02 0.2 0.2 0.2 0.2	0.1 0.2 10.6714818 5 2.134296361 1 1.926378739 0 194.02 25.06 438.2047802 1 80.71713845 5 0.1	0.04 0.2 5.2145 0.0429 0.9397 52.73 3231.2 18.18 525.3 19.09 88.557	Final Load % Net Removal	23.3203143
Welland Function Factor 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0	0.2 0.2 0.2 0.0789 0 0.0789 0 0.0158 0 0.0158 0 0.0158 0 0.0146 0 0.0146 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	0.2 10.6714818	0.2 5.2145 0.0429 0.9397 52.73 3231.2 18.18 525.3 19.09 88.557	Final Load % Net Removal	23.3203143
Load 23,38691608 0 43,20167918 32,50048586 0 13,66272186 0 0 13,34862 0 36,31926869 Methal Function Value 2-10,4822447 0 3-3,881911512 2-29,55043727 0 12,29644967 0 0 2,668724 0 7,263857379 Met Yield 2,338691608 0 4,320167918 3,250048586 0 1,366272186 0 0 2,463028 0 6,701472269 MATERSHED FUNCTION	0 0.0789 0 0.0158 0 0.0158 0 0.0146 0 0.146 0 0.37 22585547 2.758 0 1.1918 0.5 1.1 0 0 0.2 0.2	194.02 25.06 438.2047802 10.1 194.02 25.06 438.2047802 10.1 10.1	52.145 .0429 .9397 52.73 3231.2 18.18 525.3 19.09 88.557	Final Load % Net Removal	23.3203143
Wetland Function Value -21.04822447 0 -38.88151126 -29.25043727 0 -12.29644967 0 0 2.689724 0 7.263857379	0 0.0158 0 0.0146 0 0.01 1.22 0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2	2.134296361 1 1.926378739 0 1 1.926378739 0 1.926378739 0 25.06 438.2047802 1 80.71713845 5	52.73 3231.2 18.18 525.3 19.09	Final Load % Net Removal	23.3203143
Net Yield 2.338691608 0 4.320167918 3.250048596 0 1.366272196 0 0 2.463028 0 6.701472269 WATERSHED FUNCTION Scenario 2 - Authorized Project (2 seasons) 285 ft 250.07 0 739.84 71.34 0 112.71 0 0 62.97 2.45 1743.91 280 1 280 1 30.89 0 0 10.89 0 0 153.73 10.00 10.	0 0.0146 0.01 1.22 0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 0.20 0.9853	194.02 25.06 438.2047802 80.71713845 0.1	52.73 3231.2 18.18 525.3 19.09 88.557	% Net Removal	
### WATERSHED FUNCTION Scenario 2 - Authorized Project	0.01 1.22 0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 0.26862339 0.9853	194.02 25.06 438.2047802 1 80.71713845 5 0.1	52.73 3231.2 18.18 525.3 119.09 38.557	% Net Removal	
Scenario 2 - Authorized Project (2 seasons) 285 ft 250.07 0 739.84 71.34 0 112.71 0 0 62.97 2.45 1743.91 286 ft 250.07 0 171.72 34.25 0 30.89 0 0 10.89 0 153.73 volume Season 1 = 7298 564.7967703 0 1670.996099 161.1252913 0 254.5616987 0 0 142.2212 5.533459981 3938.716102 0.022 volume Season 2 = 1692 258.3850298 0 553.102.4348 110.3177172 0 99.49530753 0 0 35.0762 0 495.1574499 Concentration/Export Coefficient Season 1 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.	0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 06862339 0.9853	25.06 438.2047802 1 80.71713845 5 0.1	18.18 525.3 19.09 8.557	Removal	86.9
	0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 06862339 0.9853	25.06 438.2047802 1 80.71713845 5 0.1	18.18 525.3 19.09 8.557		
285 ft 250.07 0 739.84 71.34 0 112.71 0 0 62.97 2.45 1743.91 280 ft 80.22 0 171.72 34.25 0 30.89 0 0 10.89 0 153.73 Volume Season 1 = 7298 564.7967703 0 1670.999099 161.1252913 0 254.5616987 0 0 142.2212 5.533459981 3938.716102 0.022 Volume Season 2 = 1692 258.3850298 0 553.1024348 110.3177172 0 99.49530753 0 0 35.0762 0 495.1574499 Concentration/Export Coefficient Season 1 0.21	0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 06862339 0.9853	25.06 438.2047802 1 80.71713845 5 0.1	18.18 525.3 19.09 8.557		
280 ft 80.22 0 171.72 34.25 0 30.89 0 0 10.88 0 153.73	0 0.37 22585547 2.7554 0 1.1918 0.5 1.1 0 0 0.2 0.2 06862339 0.9853	25.06 438.2047802 1 80.71713845 5 0.1	19.09 58.557	31	
Volume Season 2 = 1692	0 1.1918 0.5 1.1 0 0 0.2 0.2 06862339 0.9853	80.71713845 5 0.1	8.557		
Concentration/Export Coefficient Season 1 0.2	0.5 1.1 0 0 0.2 0.2 06862339 0.9853	0.1			
Season 1 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.11 0.5 1.1 Concentration/Export Coefficient Season 2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.01 0	0 0 0.2 0.2 06862339 0.9853	0	0.04		
Concentration/Export Coefficient Season 2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0 0 0.2 0.2 06862339 0.9853	0	0.04	1	
Season 2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0 0 0 Welland Function Factor -0.9	0.2 0.2 06862339 0.9853	0			
Wetland Function Factor 0.9	0.2 0.2 06862339 0.9853	0	_		
Load Season 1 * 146.3056896 0 432.8500076 41.73810492 0 65.94199335 0 0 50.85734 1.681273158 1408.458347 0.006 Load Season 2 ** 47.80885287 0 102.340267 20.41203205 0 18.40956701 0 0 6.490132 0 91.61873537	06862339 0.9853		0 2		
Load Season 2 ** 47.80885287 0 102.340267 20.41203205 0 18.40956701 0 0 6.490132 0 91.61873537			0.2	+	
	0 0.2205	117.4391306 3		Total I and	0040 040040
		14.93505177 1	0.635	Total Load	2610.610942
Wetland Function Value (Both 174,7030882 0 481.6712471 -55.93512327 0 -75.91640432 0 0 11.46949 0.336254632 300.0154164 0.001	01372468 0.2412	26 47483649	1223		
* Export Coefficients were reduced by 50% for upland and ag land covers s	51372400 0.2412	20.47403040	.4225		
** No Export for upland and ag land covers					
Net Yield 19.41145425 0 53.51902746 6.215013697 0 8.435156035 0 0 10.60287 0.307586743 277.7772389 0.001	01255456 0.2225	23.90587272 7	7.5886	Final Load	407.9866008
WATERSHED FUNCTION				% Net Removal	84.37
Scenario 3 - Avoid and					
Minimize (2 seasons)					
282 ft 101.09 0 258.37 47.27 0 44.74 0 0 16.58 0 292.73	0 0.46		22.92 825.3		
280 ft 80.22 0 171.72 34.25 0 30.89 0 0 10.89 0 153.73	0 0.37		18.18 525.3	31	
Volume Season 1 = 3080 377.2380537 0 964.1606087 176.3976931 0 166.9564796 0 0 61.87167 0 1092.381991		153.7462441 8			
Volume Season 2 = 1692 258.3850298 0 553.1024348 110.3177172 0 99.49530753 0 0 35.0762 0 495.1574499	0 1.1918	80.71713845 5	8.557		
Concentration/Export Coefficient					
Season 1 0.2	0.5 1.1	0.1	0.04		
			0		
	0.2 0.2	0.2	0.2		
			22.341	Total Load	4400 000 47
Load Season 2 ** 47.80885287 0 102.340267 20.41203205 0 18.40956701 0 0 6.490132 0 91.61873537 Wetland Function Value (Bdh	0 0.2205	14.93505177 1	0.835	Total Load	1180.88647
Wetsian runcion value (but) Seasons) -130.9761798 0 -316.887916 -59.49568781 0 -55.49237147 0 0 5.241582 0 87.94961869	0 04505	11.11907214 6			
Selsotinis -130.9761799		10.02383857 5		Final Load	163.9276489
Net field 14.5529067 U 35.20970644 0.610031979 U 0.105619052 U 0 4.791233 U 60.45760296	0 0.1402	10.02363657 5	0.9754	% Net	103.9270469
WATERSHED FUNCTION				Removal	86.12
Scenario 4 - Extreme High Flow (existing conditions)					
Constitution Cons	24.42 7497.1	3742 1	76.21 54998	3	
			94.44		
Concentration 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.5 1.1		0.04		
Odried Marchion Factor 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.9 0.9	0.2 0.2		0.04		
	44093588 11166		186.85	Total Load	77222.49726
	88187176 2233.2		37.37		
Net Yield 71.71408755 0 533.1118216 38.85496371 1.311524709 28.65409995 8.664834 0 115.3087 174.8976946 9928.02414 5.578	78196198 2076.6	733.6241994	33.69	Final Load	13750.0584
WATERSHED FUNCTION				% Net Removal	82.19
Scenario 5 - Moderate High					
Flow (existing conditions)					
290 and below 485.21 0 2316.24 147.63 0 144.21 2.05 0 90 54.48 5842.45	1.44 78.44		02.57 9853.9	37	
		2055.384885 3			
Concentration 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 1.1 0.5 1.1	0.5 1.1		0.04		
Wetland Function Factor -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 0.2 0.2 0.2	0.2 0.2		0.2		
	20771944 85.545		67.86	Total Load	9004.664706
	44154389 17.109		3.572		
Net Yield 31.31585587 0 149.4920509 9.528162655 0 9.307433018 0.132309 0 18.46867 8.533937501 1198.914518 0.22	22556663 16.096	73.22462028 1	2.248	Final Load	1527.487599
				% Net	
WATERSHED FUNCTION				Removal	83.0

Table C24. High Watershed Functions for Phosphorus - St. Johns Bayou.

St. Johns Bayou - Low Ret	tention Scenario	o - Phosphorus															
Contour Range	Cuproso/Tupolo 16	Scrub/shrub marsh 19	DI U 42	Riparian 43	River 45	Onon water 24	March 20	Condhor 21	Cotton 26	Cotton/soybeans 37	Coulonna 20	Sautoana/sam 20	Com 40	Horb Vog 41	Booture I C Total		
Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/Stirub ItiaiSti 19	DLIT 42	Niparian 43	Kivei 43	Open water 24	IVIAISII 29	Sariubai 31	CULLUIT 30	Collor/Soybearis 37	Suybeans 36	Suybeans/com 39	COIII 40	neib. veg. 41	rasiule LC Total		
Conditions (No Flood)																	
275 ft	15.32	2	28.3	21.29	0	8.95	0	0	6.77	0	18.42		0.04	6.8	1 3.38 109.28		
Volume = 644	90.28257687								39.89641		108.5512445			40.13213763		1	
Concentration/Export Coefficient	0.21					0.21	0.21			0.5							
	-0.1																
Wetland Function Factor		-0.				-0.1			10.04000	1						T	170 00 1550
Load	23.38691608					13.66272186			13.34862		36.31928689		0.0789			Total Load	178.3845524
Wetland Function Value	-2.338691608	3 (-1.366272186			13.34862		36.31928689		0.0789				
Net Yield	21.04822447	' (38.88151126	29.25043727	0	12.29644967	0	0	12.31514	0	33.50736134	0	0.0728	9.631893693	3 4.6985	Final Load	161.7022927
WATERSHED FUNCTION																% Net Removal	9.35
Scenario 2 - Authorized Project (2 seasons)																	
285 ft	250.07	,	739.84	71.34	. 0	112.71	0	0	62.97	2.45	1743.91	0.01	1.22	194.02	2 52.73 3231.27		
280 ft	80.22					30.89	0			2.43							
Volume Season 1 = 7298	564.7967703					254.5616987	0		142.2212		3938.716102			438.2047802	2 119.09		
Volume Season 2 = 1692	258.3850298	3 (553.1024348	110.3177172	0	99.49530753	0	0	35.0762	0	495.1574499	0	1.1918	80.71713845	58.557		
Concentration/Export Coefficient Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.	1 0.04		
Concentration/Export Coefficient														1	1 1		
Season 2	0.15	0.15				0.15	0.15	0.15	0	0	0	0)(0 0		
Wetland Function Factor	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1	1	1	1	1	1	1 1		
Load Season 1 *	146.3056896	. (41.73810492		65.94199335	0		50.85734	1.681273158	1408.458347	0.006862339	0.9853	117.4391306	31.277		
Load Season 2 **	47.80885287		102.340267			18.40956701	0		6.490132		91.61873537			14.9350517		Total Load	2610.610942
Wetland Function Value (Both	-11.00000201	<u> </u>		20200200		.5.10000701			2.100102		2 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0		0.2200			. Jun Louis	2010.010042
Seasons)	-19.41145425		-53.51902746	-6.215013697		-8.435156035	_		57.34747	4 604070450	1500.077082	0.000000000	1 2055	132.3741824	42 112		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag	*19.41140423		53.31302740	*6.213013097	0	*8.430130033	0	0	37.34747	1.061273136	1300.077082	0.000802338	1.2036	132.374102	4 42.112		
land covers																	
Net Yield	174.7030882	2	481.6712471	55.93512327	0	75.91640432	0	0	53.01434	1.537933717	1388.886195	0.00627728	1.1124	119.5293636	37.943	Final Load	2390.25561
WATERSHED FUNCTION																% Net Removal	8.44
Scenario 3 - Avoid and Minimize (2 seasons)																	
282 ft	101.09)	258.37	47.27		44.74	0	0	16.58	0	292.73		0.46	41.3	2 22.92 825.36		
280 ft	80.22					30.89				0							
Volume Season 1 = 3080	377.2380537		964.1606087			166.9564796			61.87167		1092.381991			153.746244			
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	. 0	99.49530753	0	0	35.0762	0	495.1574499	0	1.1918	80.71713845	58.557		
Concentration/Export Coefficient																	
Season 1	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1.1	0.5	1.1	0.5	1.1	0.1	1 0.04		
Concentration/Export Coefficient			İ														
Season 2	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0	0	0) () (0 0		
Wetland Function Factor	-0.1					-0.1			1	1	1	1		í	1 1		
Load Season 1 *	97.72023584					43.24862352			19.71778		348.1293581		0.5471	40.66030893			
Load Season 2 **	47.80885287					18.40956701	0		6.490132		91.61873537		0.2205			Total Load	1180.88647
	47.00000207		102.340267	20.41203205	U	16.40956701	U	U	6.490132	U	91.010/353/	U	0.220	14.9350517	10.635	TOTAL LOAD	1100.00047
Wetland Function Value (Both																	
Seasons)	-14.55290887	(-35.20976844			-6.165819052	0		26.20791		439.7480934		0.7676				
Net Yield	130.9761798	3 (316.887916	59.49568781	0	55.49237147	0	0	23.95616	0	402.2890148	0	0.701	50.11919283	3 29.877	Final Load % Net	1069.794758
WATERSHED FUNCTION																Removal	9.41
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	686.78	3			12.56	274.41	82.98			765.66			7497.		2 176.21 54998.3	3	
Volume = 310381	3875.819129) (28812.26083	2099.933454	70.88192471	1548.623325	468.2948	0	2349.318	4320.975675	202275.1165	137.8134237	42309	21117.84732	994.44		
Concentration	0.15	0.15				0.15				0.5	1.1		1.1				
Wetland Function Factor	-0.1	-0.1				-0.1				1	1	1	1		1 1		
Load	717.1408755									954 4392696	53382.80707	30.44093588	11166	4058.86347	7 186.85	Total Load	77222.49726
Wetland Function Value	-71.71408755					-28.65409995			620.013		53382.80707					. Julia Loudd	
Net Yield	645.4267879								576.5437		49640.1207					Final Load	71479.53731
	045.4207879		4796.006394	349.0940734	11.80372238	257.888895	77.96351	0	5/0.543/	0/4.4004/20	49040.1207	27.09090099	1036.	3008.12099	100.43	% Net	
WATERSHED FUNCTION Scenario 5 - Moderate High																Removal	7.4
														1	1 1		
Flow (existing conditions)	ļ .		1					-							<u> </u>		
	485.21	(144.21	2.05			54.48					5 102.57 9853.97	1	
290 and below	1692,479084	(8079.363067	514.953705	0	503.0242755	7.150681	0	313.9324	190.0337184	20379.26758	5.022917667	273.61	2055.38488	357.78		
		0.15	0.15	0.15	0.15	0.15	0.15			0.5	1.1	0.5	1.1	0.1	1 0.04		
290 and below Volume = 34372	0.15																
290 and below Volume = 34372 Concentration				-0 1	-0.1	-∩ 1	-0.1	-0 1	1		1	1 1	1 1	11	1 1		
290 and below Volume = 34372 Concentration Wetland Function Factor	-0.1	-0.1	-0.1			93.07433018				46 1858719					1 1	Total Load	9004 66470
290 and below Volume = 34372 Concentration Wetland Function Factor Load	-0.1 313.1585587	-0.1	-0.1 1494.920509	95.28162655	0	93.07433018	1.323087	0	98.15205	46.1858719	6371.649158	1.220771944	85.545	404.1537852	2 67.86	Total Load	9004.66470
290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value	-0.1 313.1585587 -31.31585587	-0.°	1 -0.1 1494.920509 -149.4920509	95.28162655 -9.528162655	0	93.07433018 -9.307433018	1.323087 -0.13231	0	98.15205 98.15205	46.1858719 46.1858719	6371.649158 6371.649158	1.220771944 1.220771944	85.545 85.545	404.1537852 404.1537852	2 67.86 2 67.86		9004.66470
290 and below Volume = 34372 Concentration Wetland Function Factor Load	-0.1 313.1585587	-0.°	-0.1 1494.920509	95.28162655 -9.528162655	0	93.07433018	1.323087 -0.13231	0	98.15205	46.1858719 46.1858719	6371.649158	1.220771944 1.220771944	85.545 85.545	404.1537852	2 67.86 2 67.86	Final Load	9004.66470 8436.54124
290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value	-0.1 313.1585587 -31.31585587	-0.°	1 -0.1 1494.920509 -149.4920509	95.28162655 -9.528162655	0	93.07433018 -9.307433018	1.323087 -0.13231	0	98.15205 98.15205	46.1858719 46.1858719	6371.649158 6371.649158	1.220771944 1.220771944	85.545 85.545	404.1537852 404.1537852	2 67.86 2 67.86		

Table C25. Low Watershed Functions for Phosphorus - St. Johns Bayou.

St. Johns Bayou - Expected																		
	Cypress/Tupelo 16 Scru	ıb/shrub marsh 19	BLH 42	Riparian 43 River 4	5	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/corn 39	Corn 40	Herb. Veg. 41	Pasture	LC Total		
Scenario 1 - Existing																		
Conditions (No Flood)												_						
275 ft	15.32	0		21.29	0	8.95 52.74341142	0			0	18.42	0			3.38	109.28		
Volume = 644 Concentration/Export Coefficient	90.28257687	0		125.4644949	0	52.74341142	0		39.89641			3.6	0.2357					
Wetland Function Factor	0.8	0.8		-0.5	-0.1	-0.2					3.0	3.0	3.0	3.1				
I oad	445.4650682	0.0		619.0568735	-0.1	260.2423212	0.8					0	1.2214				Total Load	3229.177386
Wetland Function Value	356.3720545	0		-309.5284367	0	-52.04846423	0										TOTAL LOAG	3229.177300
	356.3720545			-309.5284367 309.5284367	0	-52.04846423 208.1938569	0		187.0317		508.8808463						Final Load	2510.937657
Net Yield	330.3720343		658.3113018	309.5264367	0	206.1936569	U	U	167.0317		506.6606463	U	1.1051	100.130729	93.376		% Net	2510.937657
WATERSHED FUNCTION																	Removal	22.24
Scenario 2 - Authorized Project (2 seasons)																		
285 ft	250.07	0	739.84	71.34	0	112.71	0	0	62.97	2.45	1743.91	0.01	1.22	194.0	52.73	3231.27		
280 ft	80.22	0		34.25	0	30.89	0					0.01						
Volume Season 1 = 7298	564.7967703	0		161.1252913	0	254.5616987	0		142.2212		3938.716102		2.7554					
Volume Season 2 = 1692	258.3850298	0		110.3177172	0	99.49530753	0				495.1574499							
Concentration/Export Coefficient	200.0000200		000.1021010	110.0111112		00.10000700			00.0702		100.1011100		1.1010	00.7171001	00.007			
Season 1	4	4	4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.0	3.6			
Concentration/Export Coefficient Season 2	4	4	4	4	4	4	4	4	0		0	0	0		0			
Wetland Function Factor	0.8	0.8	0.8	-0.5	-0.1	-0.2	0.8	-0.2	1	1	1	1	1		1			
Load Season 1 *	2786.77504	0		795.0115223	0	1256.037969	0	0	747.6075		20704.46657	0.118724398	14.484	2303.49077	626.03			
Load Season 2 **	1274.902743	0		544.3208546	0		0		173.0702		2443.166277		5.8803				Total Load	45856.40684
Wetland Function Value (Both																		
Seasons)	3249.342227	0	8779.068668	-669.6661884	0	-349.3919511	0	0	920.6777	29.08747762	23147.63285	0.118724398	20.365	2701.75882	914.96			
* Export Coefficients were reduced by 50% for upland and ag land covers																		
** No Export for upland and ag											1							
	3249.342227	0	8779.068668	669.6661884		1397.567804	0		833.1971	00.05700050	20959.90643	0.407500440	40.447	2445.71652	007.04			39206.65267
Net Yield	3249.342227		8779.068668	669.6661884	- 0	1397.567804	- 0	0	833.1971	26.35720256	20959.90643	0.107580419	18.417	2445.71652	827.31		Final Load % Net	39206.65267
WATERSHED FUNCTION																	Removal	14.50
Scenario 3 - Avoid and																		
Minimize (2 seasons)																		
282 ft	101.09	0		47.27	0	44.74					292.73					825.36		
280 ft	80.22	0		34.25	0	30.89										525.31		
Volume Season 1 = 3080	377.2380537	0		176.3976931	0	166.9564796			61.87167		1092.381991		1.7166					
Volume Season 2 = 1692	258.3850298	0	553.1024348	110.3177172	0	99.49530753	0	0	35.0762	0	495.1574499	0	1.1918	80.7171384	58.557			
Concentration/Export Coefficient									3.6	3.6	3.6	3.6	3.6	3.0	3.6			
Season 1 Concentration/Export Coefficient	4	4	4	4	4	4	- 4	4	3.0	3.0	3.0	3.0	3.0	3.1	3.0			
													١ ,					
Season 2	0.0	0.8	0.8	-0.5	-0.1	- 4	0.0	0.0	- 0		- 0	1	- 0	<u> </u>	1 1			
Wetland Function Factor Load Season 1 *	0.8 1861.337826	0.8		-0.5 870.3673856	-0.1	-0.2 823.7833051			317.3601	1	5603.185925		_	788.614969				
Load Season 1	1274.902743			544.3208546	0	490.9217868	0		173.0702		2443.166277	0					Total Load	23817.98455
	12/4.902/43		2/29.0/3/65	544.3206546	U	490.9217000	U	U	173.0702		2443.1002//	U	5.0003	390.200047	200.93		TOTAL LOAG	23617.96455
Wetland Function Value (Both Seasons)	2508.992455		5989.086342	-707.3441201	0	-262.9410184	_		490.4303		8046.352201		14.685	1186.88301	727.64			
Net Yield	2508.992455			707.3441201	0		0		490.4303		7263.041191	0					Final Load	19703.81683
Net Heid	2306.992433		3909.000342	707.3441201	0	1031.704074	- 0	- 0	442.3931		7203.041191	0	13.23	1071.1939	030.33		% Net	19703.01003
WATERSHED FUNCTION																	Removal	17.27
Scenario 4 - Extreme High Flow																		
(existing conditions)	000 77			070.4	45	074	00		440	9	05045		7405		470.5	E 4000 -		
300 and below	686.78	0		372.1	12.56	274.41		0					7497.1			54998.3		
Volume = 310381	3875.819129			2099.933454	70.88192471	1548.623325			2349.318		202275.1165							
Concentration	4	0.8		4	4	4		4		3.6	3.6	3.6	3.6	3.0	3.6			
	2.0		0.8		-0.1 349.7399224	-0.2				20405 71700	1 1050000 110	745 5050505	240000	400040 707	1 5400 1		Total Land	4000004 171
Wetland Function Factor	0.8					7641.09332			12198.32 12198.32		1050269.149	715.5659565 715.5659565					Total Load	1602064.171
Wetland Function Factor Load	19123.75668	0	142163.1524	10361.32366		4500 04000					1050269.149							
Wetland Function Factor Load Wetland Function Value	19123.75668 15299.00534	0	142163.1524 113730.5219	-5180.661828	-34.97399224	-1528.218664					050464 1704						Final Load	1407650 404
Wetland Function Factor Load Wetland Function Value Net Yield	19123.75668	0	142163.1524 113730.5219			-1528.218664 6112.874656			11039.14		950464.1791	647.5671595					Final Load % Net	1427650.181
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION	19123.75668 15299.00534	0	142163.1524 113730.5219	-5180.661828	-34.97399224						950464.1791							1427650.181 10.89
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High	19123.75668 15299.00534	0	142163.1524 113730.5219	-5180.661828	-34.97399224						950464.1791						% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions)	19123.75668 15299.00534 15299.00534	0 0 0	142163.1524 113730.5219 113730.5219	-5180.661828 5180.661828	-34.97399224	6112.874656	1848.498	0	11039.14	20303.69661		647.5671595	198807	99229.98810	4672.7		% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 230 and below	19123.75668 15299.00534 15299.00534 485.21	0 0	142163.1524 113730.5219 113730.5219 2316.24	-5180.661828 5180.661828	-34.97399224 314.7659301	6112.874656	1848.498	0	11039.14	20303.69661	5842.45	647.5671595	198807 78.44	99229.98810	6 4672.7	9853.97	% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372	19123.75668 15299.00534 15299.00534 15299.00534 485.21 1692.479084	0 0	142163.1524 113730.5219 113730.5219 2316.24 8079.363067	-5180.661828 5180.661828	-34.97399224	6112.874656 144.21 503.0242755	2.05 7.150681	0	90 313.9324	20303.69661 54.48 190.0337184	5842.45 20379.26758	647.5671595 1.44 5.022917667	78.44 273.61	99229.98811 589.21 2055.38488	6 4672.7 5 102.57 6 357.78	9853.97	% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration	19123.75668 15299.00534 15299.00534 15299.00534 485.21 1692.479084 4	0 0 0	142163.1524 113730.5219 113730.5219 2316.24 8079.363067	-5180.661828 5180.661828 147.63 514.953705 4	-34.97399224 314.7659301 0 0 4	6112.874656 144.21 503.0242755 4	2.05 7.150681	0 0 0 4	90 313.9324 3.6	20303.69661 54.48 190.0337184	5842.45 20379.26758 3.6	1.44 5.022917667 3.6	78.44 273.61 3.6	99229.98811 589.21 2055.38488	6 4672.7 6 102.57 6 357.78 6 3.6	9853.97	% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor	19123.75668 15299.00534 15299.00534 15299.00534 485.21 1692.479084 4 0.8	0 0 0 0 0 0 0 0 0	142163.1524 113730.5219 113730.5219 2316.24 8079.363067 4 0.88	-5180.661828 5180.661828 147.63 514.953705 4 -0.5	-34.97399224 314.7659301	144.21 503.0242755 4 -0.2	2.05 7.150681 4 0.8	0 0 0 4 -0.2	90 313.9324 3.6	20303.69661 54.48 190.0337184 3.6	5842.45 20379.26758 3.6 1	1.44 5.022917667 3.6	78.44 273.61 3.6	589.2: 2055.38488	6 4672.7 6 102.57 6 357.78 6 3.6	9853.97	% Net Removal	10.89
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	19123.75688 15299.00534 15299.00534 15299.00534 485.21 1692.479084 4 0.8 8350.894898	0 0 0 0 0 0 0 4 0.8	142163.1524 113730.5219 113730.5219 113730.5219 2316.24 8079.363067 4 4 39864.5469	-5180.661828 5180.661828 147.63 514.953705 4 -0.5 2540.843375	-34.97399224 314.7659301 0 0 4 -0.1	144.21 503.0242755 4 -0.2 2481.982138	2.05 7.150681 4 0.8 35.28232	0 0 0 4 -0.2	90 313.9324 3.6 1 1680.103	54.48 190.0337184 3.6 1 1017.022172	5842.45 20379.26758 3.6 1 109065.734	1.44 5.022917667 3.6 1 26.88164332	78.44 273.61 3.6 1	589.21 2055.38488 3.1 11000.00578	5 4672.7 5 102.57 6 357.78 6 3.6 1 1914.8	9853.97	% Net	
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value Wetland Function Value	19123.75688 15299.00534 15299.00534 15299.00534 485.21 1692.479084 4 0.8 8350.894898 680.715919	0 0 0 0 0 0 4 0.8	142163.1524 113730.5219 113730.5219 113730.5219 2316.24 8079.363067 4 0.8 39864.5489 31891.63752	-5180.661828 5180.661828 147.63 514.963705 4 -0.5 2540.843375 -1270.421687	-34.97399224 314.7659301 0 0 0 4 -0.1 0	144.21 503.0242755 4 -0.2 2481.982138 -496.3964276	2.05 7.150681 0.8 35.28232 28.22586	0 0 0 4 -0.2 0	90 313.9324 3.6 1 1680.103 1680.103	20303.69661 54.48 190.0337184 3.6 1 1017.022172 1017.022172	5842.45 20379.26758 3.6 1 109065.734 109065.734	1.44 5.022917667 3.6 1 1.26.88164332 26.88164332	78.44 273.61 3.6 1 1464.3 1464.3	589.2! 2055.38488: 3.1 11000.0057:	5 4672.7 5 102.57 5 357.78 6 3.6 1 1914.8 8 1914.8	9853.97	% Net Removal	177527.5988
Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	19123.75688 15299.00534 15299.00534 15299.00534 485.21 1692.479084 4 0.8 8350.894898	0 0 0 0 0 0 0 4 0.8	142163.1524 113730.5219 113730.5219 113730.5219 2316.24 8079.363067 4 0.8 39864.5489 31891.63752	-5180.661828 5180.661828 147.63 514.953705 4 -0.5 2540.843375	-34.97399224 314.7659301 0 0 4 -0.1	144.21 503.0242755 4 -0.2 2481.982138 -496.3964276	2.05 7.150681 0.8 35.28232 28.22586	0 0 0 4 -0.2 0	90 313.9324 3.6 1 1680.103	20303.69661 54.48 190.0337184 3.6 1 1017.022172 1017.022172	5842.45 20379.26758 3.6 1 109065.734	1.44 5.022917667 3.6 1 1.26.88164332 26.88164332	78.44 273.61 3.6 1 1464.3 1464.3	589.21 2055.38488 3.1 11000.00578	5 4672.7 5 102.57 5 357.78 6 3.6 1 1914.8 8 1914.8	9853.97	% Net Removal	10.89

Table C26. Expected Watershed Functions for Organic Carbon - St. Johns Bayou.

St. Johns Bayou - High Rete	ention - Organi	c Carbon																
	ypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43 River	45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/corn 39	Corn 40	Herb. Veg. 41	Pasture	LC Total		
Scenario 1 - Existing																		
Conditions (No Flood)																		
275 ft	15.32	(0	8.95					18.42					109.28		
Volume = 644	90.28257687	(125.4644949	0	52.74341142			39.89641		108.5512445							
Concentration/Export Coefficient	4	4			4	4	4											
Wetland Function Factor	-0.9	-0.9			-0.9	-0.9												
Load	445.4650682	(0		0		206.717				1.2214				Total Load	3229.177386
Wetland Function Value	-400.9185614	(-740.6002145	-557.1511861	0	-234.218089	0	0	41.34341	0	112.4882666	0	0.2443	41.58768162	2 20.641			
Net Yield	44.54650682	(82.28891272	61.90568735	0	26.02423212	0	0	37.40633	0	101.7761693	0	0.221	37.6273459	18.676		Final Load	410.4717405
WATERSHED FUNCTION																	% Net Removal	87.29
Scenario 2 - Authorized Project																		
(2 seasons) 285 ft	250.07		739.84	71.34		112.71	0	0	62.97	2.45	1743.91	201	1.22	40.0	2 52.73	2024.07	-	
					0													
280 ft	80.22	(34.25	0	30.89	0				153.73					525.31		
Volume Season 1 = 7298	564.7967703	(0				142.2212		3938.716102			438.204780				
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	0	99.49530753	0	0	35.0762	. 0	495.1574499	0	1.1918	80.7171384	58.557			
Concentration/Export Coefficient																		
Season 1	4	4	1 4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.0	3.6			
Concentration/Export Coefficient			i i			i i		i i	1		1	1		1			+	
Season 2	4	4	1 4	. 4	4	4	4	4	n	n .	n 0	n	0		0 0			
Wetland Function Factor	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	0.2	0.2	0.2	0.2	0.2	0.:	2 0.2			
					-0.9		-0.9				20704.46657						+	
Load Season 1 * Load Season 2 **	2786.77504 1274.902743				0	1200.001000			747.6075 173.0702		2443.166277						Total Load	45856.40684
	1274.902743		2729.073785	544.3208546	0	490.9217868	- 0	0	173.0702	0	2443.1bb277	0	5.8803	398.268047	288.93		I Utal Load	45856.40684
Wetland Function Value (Both						l			1	.1		_	l	l				
Seasons)	-3655.510005	(-9876.452252	-1205.399139	0	-1572.26378	0	0	184.1355	5.817495525	4629.52657	0.02374488	4.0729	540.351765	182.99			
* Export Coefficients were																		
reduced by 50% for upland and																		
ag land covers																		
** No Export for upland and ag																		
land covers																		
Net Yield	406.1677784		1097.383584	133.9332377		174.6959755	0		166.6394	E 274 440F40	4191.981287	0.004540004	2 6024	489.143304	165 40		Final Load	6834.382132
INCL HOLD	400.1077/84		1097.383584	133.9332317	0	1/4.0909/55	- 0	0	100.0394	5.271440512	+191.961287	0.021516084	3.0034	+09.143304	100.46		% Net	0034.302132
WATERCHER FLANCTION																		
WATERSHED FUNCTION			1						1								Removal	85.10
			1															
Scenario 3 - Avoid and																		
Minimize (2 seasons)																		
282 ft	101.09	(0	44.74					292.73					825.36		
280 ft	80.22	(171.72	34.25	0	30.89	0	0	10.89	0	153.73	0	0.37	25.0	18.18	525.31		
Volume Season 1 = 3080	377.2380537	(964.1606087	176.3976931	0	166.9564796	0	0	61.87167	0	1092.381991	0	1.7166					
Volume Season 2 = 1692	258.3850298	(553.1024348		0	99.49530753			35.0762		495.1574499	0	1.1918					
Concentration/Export Coefficient								1	T	i -				1	1			
Season 1	4	4	1 4	. 4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.0	3.6			
Concentration/Export Coefficient			1				-	-	3.0	3.0	3.0	3.0	3.0		3.0		+	
												_						
Season 2	4	- 4	4	4	4	4	4	4	0	. 0	. 0	0	- 0		0			
Wetland Function Factor	-0.9	-0.9			-0.9	-0.9												
Load Season 1 *	1861.337826				0	823.7833051			317.3601									
Load Season 2 **	1274.902743	(2729.073785	544.3208546	0	490.9217868	0	0	173.0702	! 0	2443.166277	0	5.8803	398.268047	2 288.93		Total Load	23817.98455
Wetland Function Value (Both																	\neg	
Seasons)	-2822.616512	(-6737.722135	-1273.219416	0	-1183.234583	0	0	98.08606	0	1609.27044	0	2.937	237.376603	4 145.53			
Net Yield	313.6240569	C	748.6357928		0				88.51901		1452.608238		2.65	214.239194			Final Load	3224.525151
								1		Ī					1		% Net	
WATERSHED FUNCTION																	Removal	86.46
			1					l	†	<u> </u>				t	1			20.40
Scenario 4 - Extreme High Flow			1					-	1	1			_		+		-	
(existing conditions)	00			070	45	07	00	-	440		05045		7407		470.51	E 4000 -		
300 and below	686.78				12.56	274.41							7497.1			54998.3		
		(2099.933454	70.88192471	1548.623325	468.2948		2349.318		202275.1165							
Volume = 310381	3875.819129			. 4	4	4	4	4										
Volume = 310381 Concentration		4					-0.9						0.2	0.3	2 0.2			
Volume = 310381 Concentration Wetland Function Factor	3875.819129 4 -0.9	-0.9	-0.9		-0.9	-0.9			1									
Volume = 310381 Concentration	3875.819129 4 -0.9 19123.75668		-0.9		-0.9 349.7399224	-0.9 7641.09332		0	12198.32	22435.71786	1050269.149	715.5659565		109649.787	4 5163.4		Total Load	1602064.171
Volume = 310381 Concentration Wetland Function Factor Load	3875.819129 4 -0.9 19123.75668	-0.9 C	-0.9 142163.1524	10361.32366	349.7399224	7641.09332	2310.623						219683				Total Load	1602064.171
Volume = 310381 Concentration Wetland Function Factor	3875.819129 4 -0.9 19123.75668 -17211.38101	-0.9 (-0.9 142163.1524 -127946.8372	10361.32366 -9325.19129	349.7399224 -314.7659301	7641.09332 -6876.983988	2310.623 -2079.56	0	2439.664	4487.143573	210053.8298	143.1131913	219683 43937	21929.9574	9 1032.7			
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value	3875.819129 4 -0.9 19123.75668	-0.9 C	-0.9 142163.1524 -127946.8372	10361.32366 -9325.19129	349.7399224	7641.09332	2310.623 -2079.56	0		4487.143573		143.1131913	219683 43937	21929.9574	9 1032.7		Final Load	1602064.171 275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value	3875.819129 4 -0.9 19123.75668 -17211.38101	-0.9 (-0.9 142163.1524 -127946.8372	10361.32366 -9325.19129	349.7399224 -314.7659301	7641.09332 -6876.983988	2310.623 -2079.56	0	2439.664	4487.143573	210053.8298	143.1131913	219683 43937	21929.9574	9 1032.7			275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION	3875.819129 4 -0.9 19123.75668 -17211.38101	-0.9 (-0.9 142163.1524 -127946.8372	10361.32366 -9325.19129	349.7399224 -314.7659301	7641.09332 -6876.983988	2310.623 -2079.56	0	2439.664	4487.143573	210053.8298	143.1131913	219683 43937	21929.9574	9 1032.7		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High	3875.819129 4 -0.9 19123.75668 -17211.38101	-0.9 (-0.9 142163.1524 -127946.8372	10361.32366 -9325.19129	349.7399224 -314.7659301	7641.09332 -6876.983988	2310.623 -2079.56	0	2439.664	4487.143573	210053.8298	143.1131913	219683 43937	21929.9574	9 1032.7		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions)	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668	-0.9 (9 -0.9 0 142163.1524 0 -127946.8372 0 14216.31524	10361.32366 -9325.19129 1036.132366	349.7399224 -314.7659301	7641.09332 -6876.983988 764.109332	2310.623 -2079.56 231.0623	0	2439.664 2207.827	4487.143573 4060.739323	210053.8298 190092.8358	143.1131913 129.5134319	219683 43937 39761	21929.9574 19845.9976	9 1032.7 3 934.54		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668	-0.9 ((9 -0.9 142163.1524 0 -127946.8372 14216.31524	10361.32366 -9325.19129 1036.132366	349.7399224 -314.7659301 34.97399224	7641.09332 -6876.983988 764.109332	2310.623 -2079.56 231.0623	0	2439.664 2207.827	4487.143573 4060.739323 54.48	210053.8298 190092.8358	143.1131913 129.5134319	219683 43937 39761 78.44	21929.9574 19845.9976 19845.9976	9 1032.7 3 934.54 5 102.57		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668	-0.9 C	9 -0.9 142163.1524 0 -127946.8372 0 14216.31524 0 2316.24 0 2316.24	10361.32366 -9325.19129 1036.132366	349.7399224 -314.7659301	7641.09332 -6876.983988 764.109332	2310.623 -2079.56 231.0623	0 0	2439.664 2207.827 90 313.9324	4487.143573 4060.739323 0 54.48 190.0337184	210053.8298 190092.8358 5842.45 20379.26758	143.1131913 129.5134319 1.44 5.022917667	219683 43937 39761 78.44 273.61	21929.9574 19845.9976 19845.9976 589.2 2055.38488	9 1032.7 3 934.54 5 102.57 5 357.78		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668 485.21 1692.479084 4	-0.5 C C C	9 -0.9 142163.1224 2 -127946.8372 2 14216.31524 2 2316.24 3 8079.36307 4 4	10361.32366 -9325.19129 1036.132366 147.63 514.953705 4	349.7399224 -314.7659301 34.97399224	7641.09332 -6876.983988 764.109332 144.21 503.0242755	2310.623 -2079.56 231.0623 2.05 7.150681 4	0 0 0 0 0 0 4	90 313.9324 3.6	4487.143573 4060.739323 54.48 190.0337184 3.6	210053.8298 190092.8358 5842.45 20379.26758	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6	219683 43937 39761 78.44 273.61 3.6	21929.9574 19845.9976 19845.9976 589.2 2055.38488 3.3	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668	-0.9 C	9 -0.9 142163.1224 2 -127946.8372 2 14216.31524 2 2316.24 3 8079.36307 4 4	10361.32366 -9325.19129 1036.132366 1036.132366 147.63 514.953705 4	349.7399224 -314.7659301 34.97399224	7641.09332 -6876.983988 764.109332 144.21 503.0242755	2310.623 -2079.56 231.0623 2.05 7.150681 4	0 0 0 0 0 0 4	90 313.9324 3.6	4487.143573 4060.739323 54.48 190.0337184 3.6	210053.8298 190092.8358 5842.45 20379.26758	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6	219683 43937 39761 78.44 273.61 3.6	21929.9574 19845.9976 19845.9976 589.2 2055.38488 3.3	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6		Final Load % Net	275227.7395
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration	3875.819129 4 -0.9 19123.75668 -17211.38101 1912.375668 485.21 1692.479084 4	-0.5 C C C	9 -0.9 142163.1524 127946.8372 0 14216.31524 14216.31524 0 2316.24 0 8079.363067 4 -0.9	10361.32366 -9325.19129 1036.132366 1036.132366 147.63 514.953705 4	349.7399224 -314.7659301 34.97399224	7641.09332 -6876.983988 764.109332 	2310.623 -2079.56 231.0623 2.05 7.150681 4 -0.9	0 0 0 0 4 -0.9	90 313.9324 3.6	4487.143573 4060.739323 54.48 190.0337184 3.6 0.2	210053.8298 190092.8358 5842.45 20379.26758 3.6 0.2	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6 0.2	219683 43937 39761 78.44 273.61 3.6	21929.9574 19845.9976 19845.9976 589.2 2055.38488 3.1	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6 2 0.2	9853.97	Final Load % Net	275227.7395 82.82
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	3875.819129 4 - 0.9 19123.75688 -17211.3816 1912.375668 485.21 1692.479084 4 - 0.9 8350.894898	-0.6 () () () () () () () () () ()	9 -0.9 9 142163.1524 1-127946.8372 14216.31524 2 2316.24 2 8079.363067 4 9 9 39864.5466	10361.32366 -9325.19129 1036.132366 147.63 514.953705 4 -0.9 2540.843375	349.7399224 -314.7659301 34.97399224 0 0 0 4 -0.9	7641.09332 -6876.983988 764.109332 	2310.623 -2079.56 231.0623 2.05 7.150681 4 -0.9 35.28232	0 0 0 0 0 4 -0.9	90 313.9324 0.2 1680.103	4487.143573 4060.739323 54.48 190.0337184 3.66 0.2 1017.022172	210053.8298 190092.8358 190092.8358 5842.45 20379.26758 3.6 0.2 109065.734	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6 0.2 26.88164332	78.44 273.61 3.6 0.2	21929.9574 19845.9976 19845.9976 589.21 2055.38488 0 3.1 11000.00574	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6 2 0.2 8 1914.8	9853.97	Final Load % Net Removal	275227.7395 82.82
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration	3875.819129 4 -0.9 19123.75668 -17211.3011 1912.375668 485.21 1692.479084 4 -0.9 8350.894898 -7515.804898	-0.6 C. C. C	9	1036.132366 9325.19129 1036.132366 147.63 514.953705 4 4 -0.9 2540.84375 -2286.759037	349.7399224 -314.7659301 34.97399224 0 0 0 4 -0.9	7641.09332 -6876.983988 764.109332 -144.21 -503.0242755 -4 -0.9 -2481.982138 -2233.783924	2.05 7.150681 4 -0.09 35.28232 -31.7541	0 0 0 0 0 4 -0.9 0	90 313.9324 0.2	4487.143573 4060.739323 54.48 190.0337184 3.6 0.2 1017.02212 203.4044344	210053.8298 190092.8358 190092.8358 5842.45 20379.26758 3.6 0.2 109065.734 21813.14681	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6 0.2 26.88164332 5.376328664	219683 43937 39761 78.44 273.61 3.6 0.2 1464.3 292.86	21929.9574: 19845.9976: 19845.9976: 19845.9976: 19845.9976: 19845.9976: 2055.38488: 19846: 11000.0057: 11000.0057: 2200.00115:	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6 2 0.2 8 1914.8 6 382.95	9853.97	Final Load % Net Removal	275227.7395 82.82 177527.5988
Volume = 310381 Concentration Wetland Function Factor Load Wetland Function Value Net Yield WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value Wetland Function Value	3875.819129 4 - 0.9 19123.75688 -17211.3816 1912.375668 485.21 1692.479084 4 - 0.9 8350.894898	-0.6 C. C. C	9	1036.132366 9325.19129 1036.132366 147.63 514.953705 4 4 -0.9 2540.84375 -2286.759037	349.7399224 -314.7659301 34.97399224 0 0 4 -0.9 0 0	7641.09332 -6876.983988 764.109332 	2.05 7.150681 4 -0.09 35.28232 -31.7541	0 0 0 0 0 4 -0.9 0	90 313.9324 3.6 0.2 1680.103 336.0205	4487.143573 4060.739323 54.48 190.0337184 3.6 0.2 1017.02212 203.4044344	210053.8298 190092.8358 190092.8358 5842.45 20379.26758 3.6 0.2 109065.734	143.1131913 129.5134319 129.5134319 1.44 5.022917667 3.6 0.2 26.88164332 5.376328664	219683 43937 39761 78.44 273.61 3.6 0.2 1464.3 292.86	21929.9574: 19845.9976: 19845.9976: 19845.9976: 19845.9976: 19845.9976: 2055.38488: 19846: 11000.0057: 11000.0057: 2200.00115:	9 1032.7 3 934.54 5 102.57 5 357.78 6 3.6 2 0.2 8 1914.8 6 382.95	9853.97	Final Load % Net Removal	

Table C27. High Watershed Functions for Organic Carbon - St. Johns Bayou.

St. Johns Bayou - Low Rete	ention - Organi	c Carbon																
0 . 0		0 1/1 1 1 1 1	DI II 40	D: : 40				0 "	0 "	0 " / 1 ===	0 1	0 1 /						
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43 River	r 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/corn 39	Corn 40	Herb. Veg. 41	Pasture	LC Total		
Scenario 1 - Existing																		
Conditions (No Flood) 275 ft	15.32		28.3	21.29	^	8.95	0	0	6.77		18.42	0	0.04	6.8	1 3.38	109.28		
Volume = 644	90.28257687				0				39.89641		108.5512445							
Concentration/Export Coefficient	90.26257667			125.4644949	- 0	52.74341142												
				-0.1	-0.1					3.0	3.0	3.0	3.0	3.	3.0	1		
Wetland Function Factor	-0.1 445.4650682	-0.1				-0.1		-0.1	1 000 747		562.441333	1	4.004	207.938408	1 400.04		Tetal I and	2220 47720
					0			0	206.717								Total Load	3229.177386
Wetland Function Value	-44.54650682								206.717									
Net Yield WATERSHED FUNCTION	400.9185614	(740.6002145	557.1511861	0	234.218089	0	0	187.0317		508.8808463	0	1.1051	188.136729	93.378		Final Load % Net Removal	2911.420058 9.84
Scenario 2 - Authorized Project																		
(2 seasons) 285 ft	250.07		739.84	71.34		112.71	0	0	62.97	2.45	1743.91		1.22		50 =-	3231.27		
					0													
280 ft	80.22		171.72	34.25	0	30.89	0				153.73					525.31		
Volume Season 1 = 7298	564.7967703				0		0		142.2212		3938.716102			438.204780				
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	0	99.49530753	0	0	35.0762	! (495.1574499	0	1.1918	80.7171384	58.557			
Concentration/Export Coefficient Season 1	4	. 4	1 4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.	3.6			
Concentration/Export Coefficient																		
Season 2	4	4	1 4	4	4	4	4	4	0) (0	0		0	0 0	1		
Wetland Function Factor	-0.1				-0.1	-0.1					1	1	1		1 1			
Load Season 1 *	2786.77504				0	1256.037969			747.6075		20704.46657							
Load Season 2 **	1274.902743	(2729.073785	544.3208546	0	490.9217868	0	0	173.0702	! (2443.166277	0	5.8803	398.268047	288.93		Total Load	45856.40684
Wetland Function Value (Both																		
Seasons) * Export Coefficients were reduced by 50% for upland and	-406.1677784	(-1097.383584	-133.9332377	0	-174.6959755	0	0	920.6777	29.08747762	23147.63285	0.118724398	20.365	2701.75882	914.96			
ag land covers ** No Export for upland and ag																		
land covers Net Yield	3655.510005	i (9876.452252	1205.399139	0	1572.26378	0	0	833.1971	26.35720256	20959.90643	0.107580419	18.417	2445.71652	5 827.31		Final Load	41420.63296
WATERSHED FUNCTION																	% Net Removal	9.67
Scenario 3 - Avoid and																		
Minimize (2 seasons)																		
282 ft	101.09	(258.37	47.27	0	44.74	0	0	16.58	(292.73	0	0.46	41.	22.92	825.36		
280 ft	80.22	! (171.72	34.25	0	30.89	0	0	10.89	(153.73	0	0.37	25.0	18.18	525.31		
Volume Season 1 = 3080	377.2380537	(964.1606087	176.3976931	0	166.9564796	0	0	61.87167	(1092.381991	0	1.7166					
Volume Season 2 = 1692	258.3850298	(553.1024348	110.3177172	0	99.49530753	0	0	35.0762	! (495.1574499	0	1.1918	80.7171384	58.557			
Concentration/Export Coefficient																		
Season 1 Concentration/Export Coefficient	4	4	1 4	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.	3.6			
Season 2	4		1 4	4	4	4	4	4) (0	0		,	0 0			
Wetland Function Factor	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1		1	1	1		1 1			
Load Season 1 *	1861.337826				0.1	823.7833051			317.3601		5603.185925	Ö	8.8049	788.614969	. 438.71			
Load Season 2 **	1274.902743				0	490.9217868			173.0702		2443.166277						Total Load	23817.98455
Wetland Function Value (Both	1271.002710	`	2720.070700	011.0200010		100.0211000				`	L-110.100211		0.0000	000.200017	200.00		TOIGH EOGG	20017.00100
Seasons)	-313.6240569		-748.6357928	-141.468824	0	-131.4705092			490.4303		8046.352201		14.685	1186.88301	7 727 64			
Net Yield	2822.616512				0				442.5951		7263.041191						Final Load	21463.42249
WATERSHED FUNCTION	2022.010312		0/0/./22100	1273.213410		1100.204000			442.5551		7200.041101		13.20	10/1.1303	030.33		% Net Removal	9,89
																		3.03
Scenario 4 - Extreme High Flow (existing conditions)																		
300 and below	686.78				12.56	274.41			416.29				7497.1			54998.3		
Volume = 310381	3875.819129			2099.933454	70.88192471	1548.623325	468.2948		2349.318		202275.1165							
Concentration	4			4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	3.	3.6			
Wetland Function Factor	-0.1				-0.1	-0.1		-0.1			1				1 1			
Load	19123.75668				349.7399224	7641.09332			12198.32		1050269.149						Total Load	1602064.171
Wetland Function Value	-1912.375668				-34.97399224	-764.109332			12198.32		1050269.149							
Net Yield	17211.38101		127946.8372		314.7659301	6876.983988			11039.14		950464.1791						Final Load % Net	1448918.573
IVEC FIELD		1	1														Removal	9.56
WATERSHED FUNCTION																		
WATERSHED FUNCTION Scenario 5 - Moderate High																		
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions)	485.21		2316.24	147.63	0	144.21	2,05	0	90	54.48	5842 45	1,44	78.44	589.2	5 102,57	9853,97		
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below					0											9853.97		
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372	485.21 1692.479084		8079.363067		0 0 4				313.9324	190.0337184	20379.26758	5.022917667	273.61	2055.38488	357.78			
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration	1692.479084 4	(8079.363067 4 4	514.953705	4	503.0242755	7.150681	0	313.9324	190.0337184 3.6	20379.26758	5.022917667 3.6	273.61 3.6	2055.38488	357.78			
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor	1692.479084 4 -0.1	-0.1	8079.363067 4 4 -0.1	514.953705 4 -0.1	-0.1	503.0242755 4 -0.1	7.150681 4 -0.1	0 4 -0.1	313.9324 3.6	190.0337184	20379.26758 3.6	5.022917667 3.6	273.61 3.6	2055.38488	5 357.78 6 3.6 1 1		Total Lood	177507 5000
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	1692.479084 4 -0.1 8350.894898	-0.1	8079.363067 4 4 -0.1 0 39864.5469	514.953705 4 -0.1 2540.843375	-0.1 0	503.0242755 4 -0.1 2481.982138	7.150681 4 -0.1 35.28232	0 4 -0.1 0	313.9324 3.6 1 1680.103	190.0337184 3.6 1 1017.022172	20379.26758 3.6 1 109065.734	5.022917667 3.6 1 26.88164332	273.61 3.6 1 1464.3	2055.38488 3. 3. 11000.0057	5 357.78 6 3.6 1 1 8 1914.8		Total Load	177527.598
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value	1692.479084 4 -0.1 8350.894898 -835.0894898	-0.1	0 8079.363067 4 4 -0.1 0 39864.5469 0 -3986.45469	514.953705 4 -0.1 2540.843375 -254.0843375	-0.1 0 0	503.0242755 4 -0.1 2481.982138 -248.1982138	7.150681 4 -0.1 35.28232 -3.52823	0 4 -0.1 0	313.9324 3.6 1 1680.103 1680.103	190.0337184 3.6 1 1017.022172 1017.022172	20379.26758 3.6 1 109065.734 109065.734	5.022917667 3.6 1 26.88164332 26.88164332	273.61 3.6 1 1464.3 1464.3	2055.38488 3 3. 11000.0057 11000.0057	357.78 3.6 3.6 1 1 8 1914.8 8 1914.8			177527.5988
WATERSHED FUNCTION Scenario 5 - Moderate High Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	1692.479084 4 -0.1 8350.894898	-0.1	0 8079.363067 4 4 -0.1 0 39864.5469 0 -3986.45469	514.953705 4 -0.1 2540.843375 -254.0843375	-0.1 0	503.0242755 4 -0.1 2481.982138 -248.1982138	7.150681 4 -0.1 35.28232 -3.52823	0 4 -0.1 0	313.9324 3.6 1 1680.103	190.0337184 3.6 1 1017.022172 1017.022172	20379.26758 3.6 1 109065.734	5.022917667 3.6 1 26.88164332 26.88164332	273.61 3.6 1 1464.3 1464.3	2055.38488 3 3. 11000.0057 11000.0057	357.78 3.6 3.6 1 1 8 1914.8 8 1914.8		Total Load Final Load % Net	177527.598i 162482.798i

Table C28. Low Watershed Functions for Organic Carbon - St. Johns Bayou.

St. Johns Bayou - Expecte	d Concentration	ns Runoff Coeffici	ents and Function	Factors - Sedime	nts												
	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Scenario 1 - Existing																	
Conditions (No Flood)																	
275 ft	15.32					8.95									1 3.38 109.28	3	
Volume = 644	90.28257687	0							39.89641		108.5512445			7 40.1321376			
Concentration/Export Coefficient	150					150				130	130	130	130	13	0 130		
Wetland Function Factor	-0.8					-0.2		-0.2					1 1		1 1		
Load	16704.94006	0	30858.34227	23214.63275	0	9759.087043	0	0	7738.19	(21054.27712	2 0	45.72	2 7783.91026	9 3863.4	Total Load	121022.4796
Wetland Function Value	-13363.95205	0		-11607.31638	0	-1951.817409	0	0	7738.19	(21054.27712	2 0	45.72	7783.91026	9 3863.4		
Net Yield	3340.988011	0		11607.31638					6999.988		19045.75887			7041.34733		Final Load	65550.52038
WATERSHED FUNCTION	0010.000011		01111.000101	11001.01000		7007.200000			0000.000		10040.70007		711.000	7041.04700	0 0404.0	% Net Removal	45.84
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	250.07	0	739.84	71.34	0	112.71	0	0			1743.91	0.01				7	
280 ft	80.22	0	171.72	34.25	0	30.89	0	0	10.89	(153.73	3 0	0.37	7 25.0	6 18.18 525.3°	1	
Volume Season 1 = 7298	564.7967703	0	1670.969099	161.1252913	0	254.5616987	0	0	142.2212		3938.716102	0.022585547	2.7554	4 438.204780	2 119.09		
Volume Season 2 = 1692	258.3850298					99 49530753					495.1574499			8 80.7171384			
Concentration/Export Coefficient	200.0000200		000:1021010	110.0111112		00.10000100	-	-	00.0702	,	100.107 1100	, ,	1.1010	3 00.7 17 100 1	0 00.007		
Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Concentration/Export Coefficient															ا ا		
Season 2	260					260				() C	0) (ו	0 0	1	
Wetland Function Factor	-0.8					-0.2				1	1	1	1 1	1	1 1	1	
Load Season 1 *	104504.064			29812.93209		47101.42382			27971.57		774653.0956			86184.6044			
Load Season 2 **	82868.67831	0		35380.85555	0	31909.91614	0	0	11249.56	(158805.808	3 0	382.22	2 25887.4230	7 18780	Total Load	1947118.377
Wetland Function Value (Both			. 744					1								1	
Seasons)	-149898.1939		-389254.6983	-32596.89382	0	-15802.26799		۱ ،	39221.14	1088 301623	933458.9035	4 442047443	924 14	112072.027	5 42203		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag	110000.1000		555251.5555	02000.00002		10002:20700			00221111	1000.001020	555 155.5555	1.112517110	024.10	112072.027	9 12230		
land covers																	
Net Yield	37474.54846	0	97313.67458	32596.89382	0	63209.07197	0	0	35464.67	985.9163086	844700.4556	4.024148198	834.94	101375.204	1 38122	Final Load	1252080.966
WATERSHED FUNCTION																% Net Removal	35.70
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	101.09	0	258.37	47.27	0	44.74	0	0	16.58	(292.73	3 0	0.46	3 41.	2 22.92 825.36	3	
280 ft	80.22	0	171.72	34.25	. 0	30.89	0	0			153.73	3	0.37	7 25.0			
Volume Season 1 = 3080	377.2380537	0		176.3976931		166.9564796			61.87167		1092.381991			153.746244			
Volume Season 2 = 1692	258.3850298			110.3177172		99.49530753			35.0762		495.1574499			80.7171384			
Concentration/Export Coefficient	230.3030290		333.1024346	110.3177172		99.49030703	, ,	0	33.0702		493.1374498	, ,	1.1910	00.7171304	3 36.337		
	450	450		4.50	450	450		450		400							
Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	0 130		
Concentration/Export Coefficient																	
Season 2	260	260	260	260	260	260	260	260	0	() c	0) ()	0 0		
Wetland Function Factor	-0.8	-0.8	-0.8	-0.5	-0.1	-0.2	-0.8	-0.2	1	1	1	1	1	1	1 1		
Load Season 1 *	69800.16846					30891.87394	0		11884.23	(209823.3026		329.73	2 29531.3772			
Load Season 2 **	82868.67831	0				31909.91614			11249.56		158805.808			2 25887.4230		Total Load	1122380.741
Wetland Function Value (Both	02000.07031	-	177303.730	33300.03330	,	31303.31014	-	-	11243.50		130003.000	, .	002.22	23001.4230	7 10700	Total Load	1122300.741
	-122135.0774		-284630.3611	-34009.81625		40500 05000			23133.79					4 55418.8003	3 35209		
Seasons)						-12560.35802					368629.1106						
Net Yield	30533.76935	0	71157.59028	34009.81625	5 0	50241.43207	0	0	20864.03		332536.2404	1 0	641.9	49985.2989	6 31748	Final Load % Net	621718.4125
WATERSHED FUNCTION																Removal	44.61
Scenario 4 - Extreme High Flow		1					1			1				1			
(existing conditions)																	
300 and below	686.78		5105.42	372.1	12.56	274.41	82.98	0	416.29	765.66	35842.36	24.42	7497.	1 374	2 176.21 54998.3	3	
Volume = 310381	3875.819129			2099.933454	70.88192471	1548.623325			2349.318		202275.1165		42309	21117.8473			
Concentration	260			260		260										1	
Wetland Function Factor	-0.8					-0.2				130	130	. 130		1	1 1	1	
										4400005.05	00750000 70	45 400 67000	45.00	7 0000700 00	4 220224	Tetal I av. 1	400004070
Load	1243044.184								775369.6		66758932.76			7 6969739.89		Total Load	102094379.1
Wetland Function Value	-994435.3473					-99334.21316			775369.6		66758932.76			7 6969739.89		1	
Net Yield	248608.8368	0	1848120.982	336743.0188	20459.78546	397336.8526	30038.09	0	700022.8	1287514.569	60271609.72	41064.05687	7 1E+07	7 6292452.94	1 296310	Final Load % Net	84377165.99
WATERSHED FUNCTION																Removal	17.35
Scenario 5 - Moderate High Flow (existing conditions)																	
290 and below	485.21	0	2316.24	147.63	3 0	144.21	2.05	0	90	54.48	5842.45	1.44	1 78.44	4 589.2	5 102.57 9853.97	7	
Volume = 34372	1692,479084			514.953705					313.9324		20379.26758					+	
																1	
Concentration	260			260		260							_				
Wetland Function Factor	-0.8					-0.2				1					1 1		
Load	542808.1684		2591195.548	165154.8194	0	161328.839	2293.351		105418.7	63813.44337	6843371.002	1686.698944	91878	690199.550	4 120142	Total Load	11259148.3
Wetland Function Value	-434246.5347	0				-32265.7678			105418.7		6843371.002			690199.550			
Net Yield	108561.6337							0	95350.31		6189771.616			624279.698		Final Load	7999316.524
	100001.0007		0.0203.1030	02077.40300		.20000.0712	.00.07.02		30000.01	07.10.72370	2.0077010	1020.00000		32-12-10-000		% Net	
WATERSHED FUNCTION		1					1	1	1					1		Removal	28.9

Table C29. Expected Watershed Functions for Sediments - St. Johns Bayou.

St. Johns Bayou - High Re	tention - Sedime	ents															
Contour Range Scenario 1 - Existing	Cypress/Tupelo 16	Scrub/shrub marsh 19	BLH 42	Riparian 43	River 45	Open water 24	Marsh 29	Sandbar 31	Cotton 36	Cotton/soybeans 37	Soybeans 38	Soybeans/com 39	Com 40	Herb. Veg. 41	Pasture LC Total		
Conditions (No Flood)																	
275 ft	15.32		28.3	21.29	9 0	8.95	0	0	6.77	0	18.42	0	0.04	6.8	3.38 109.28	3	
Volume = 644	90.28257687	(125.4644949	0	52.74341142	0	0	39.89641	0	108.5512445	0	0.2357	40.1321376	3 19.919		
Concentration/Export Coefficient	150	150	150	150	150	150	150	150		130	130	130	130	130	130		
Wetland Function Factor	-0.9	-0.9				-0.9											
Load	16704.94006	(7738.19		21054.27712			7783.91026		Total Load	121022.479
Wetland Function Value	-15034.44605								1547.638		4210.855423		9.1441				
Net Yield WATERSHED FUNCTION	1670.494006	(3085.834227	2321.463275	5 0	975.9087043	0	0	1399.998	0	3809.151773	0	8.2718	1408.26946	7 698.96	% Net Removal	15378.3557 87.2
Scenario 2 - Authorized Project																Itemovar	07.2
(2 seasons)																	
285 ft	250.07		739.84														
280 ft	80.22		171.72							0							
Volume Season 1 = 7298	564.7967703			161.1252913					142.2212		3938.716102			438.204780			
Volume Season 2 = 1692 Concentration/Export Coefficient	258.3850298	(99.49530753			35.0762		495.1574499			80.7171384			
Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	13	130	-	
Concentration/Export Coefficient Season 2	260	260	260	260	260	260	260	260									
Season 2 Wetland Function Factor	-0.9					-0.9			0.2	0.2	0.2	0.2	0.2	0.:	2 0.2	+	
Load Season 1 *	104504.064								27971.57		774653.0956			86184.6044		+ + +	
Load Season 2 **	82868.67831								11249.56		158805.808			25887.4230		Total Load	1947118.37
Wetland Function Value (Both	02000.07031		111309.190	, 33000.03330	0	51303.31014	"	- 0	11240.00		130003.000		302.22	25007.7250	.0700	. Jiai Lodu	1047 110.37
Seasons)	-168635.4681	(-437911.5356	-58674.40887	0	-71110.20597	0	0	7844.227	217.6603247	186691.7807	0.888409489	184.83	22414.4055	1 8440.6		
* Export Coefficients were reduced by 50% for upland and ag land covers ** No Export for upland and ag																	
land covers																	
Net Yield	18737.27423		48656.83729	6519.378763	3 0	7901.133996	0	0	7092.933	197.1832617	168940.0911	0.80482964	166.99	20275.0408	2 7624.3	Final Load	286111.979
WATERSHED FUNCTION																% Net Removal	85.3
Scenario 3 - Avoid and																	
Minimize (2 seasons)							_	_									
282 ft	101.09					44.74				0							
280 ft	80.22 377.2380537									0	153.73			25.0			
Volume Season 1 = 3080 Volume Season 2 = 1692	258.3850298								61.87167 35.0762		495.1574499			80.7171384			
Concentration/Export Coefficient	230.3030290		333.1024340	110.3177172	2 0	99.49030753	-	, 0	33.0702		495.1574498		1.1910	00.7171304	30.337	_	
Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	130	130		
Concentration/Export Coefficient	130	130	130	130	130	130	150	130	130	130	130	150	130	15	7 130		
Season 2	260	260	260	260	260	260	260	260									
Wetland Function Factor	-0.9					-0.9			0.2	0.2	0.2	0.2	0.2	0.	0.2		
Load Season 1 *	69800.16846								11884.23		209823.3026			29531.3772			
Load Season 2 **	82868.67831	(11249.56		158805.808			25887.4230		Total Load	1122380.74
Wetland Function Value (Both																	
Seasons)	-137401.9621	(-320209.1563			-56521.61108			4626.758		73725.82212	0	142.39				
Net Yield	15266.88468	(35578.79514	6801.963251	1 0	6280.179008	0	0	4172.805	0	66507.24808	0	128.39	9997.05979	2 6349.7	Final Load	151082.98
WATERSHED FUNCTION																% Net Removal	86.5
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	686.78		5105.42	372.1	1 12.56	274.41	82.98	0	416.29	765.66	35842.36	24 42	7497.1	374	2 176.21 54998.3	3	
Volume = 310381	3875.819129								2349.318		202275.1165			21117.8473			
Concentration	260					260				130							
Wetland Function Factor	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9			0.2								
Load	1243044.184								775369.6		66758932.76					Total Load	102094379.
Wetland Function Value	-1118739.766	(-20459.78546				155073.9		13351786.55			1393947.97			
Net Yield	124304.4184	(924060.4908	67348.60376	2273.309495	49667.10658	15019.05	0	140004.6	257502.9139	12054321.94	8212.811374	3E+06	1258490.58	3 59262	Final Load % Net	17481844.6
WATERSHED FUNCTION																Removal	82.8
Scenario 5 - Moderate High			2316.24	147.63	3 0	144.21	2.05		90	54.48	5842.45	1.44	78.44	E00.0	5 102.57 9853.97	,	
Flow (existing conditions)	405.01								313.9324					2055.38488		1	
Flow (existing conditions) 290 and below	485.21	(003.0242755	1.150681	0	313.9324	190.0337184	20379.26758	5.022917667	1 273.61	U55.38488			
Flow (existing conditions) 290 and below Volume = 34372	1692.479084	. (8079.363067					200	100	400	400						
Flow (existing conditions) 290 and below Volume = 34372 Concentration	1692.479084 260	260	8079.363067 0 260	260	260	260	260	260	130	130		130	130	13	130		
Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor	1692.479084 260 -0.9	260 -0.9	8079.363067 0 260 9 -0.9	260	260	260 -0.9	260 -0.9	260	130	130	0.2	130	130	130	130	Total Log d	11250140.2
Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	1692.479084 260 -0.9 542808.1684	260 -0.9	0 8079.363067 0 260 9 -0.9 0 2591195.548	260 -0.9 165154.8194	260 9 -0.9 4 0	260 -0.9 161328.839	260 -0.9 2293.351	260 -0.9	130 0.2 105418.7	130 0.2 63813.44337	0.2 6843371.002	130 0.2 1686.698944	130 0.2 91878	130 2 0.3 690199.550	130 2 0.2 4 120142	Total Load	11259148.3
Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load Wetland Function Value	1692.479084 260 -0.9 542808.1684 -488527.3515	-0.5 (0 8079.363067 0 260 9 -0.9 0 2591195.548 0 -2332075.993	260 -0.9 165154.8194 -148639.3374	0 260 9 -0.9 4 0 4 0	260 -0.9 161328.839 -145195.9551	260 -0.9 2293.351 -2064.02	0 260 0 -0.9 0	130 0.2 105418.7 21083.74	130 0.2 63813.44337 12762.68867	0.2 6843371.002 1368674.2	130 0.2 1686.698944 337.3397887	130 0.2 91878 18376	130 2 0 3 690199.550 5 138039.910	0 130 2 0.2 4 120142 1 24028		
Flow (existing conditions) 290 and below Volume = 34372 Concentration Wetland Function Factor Load	1692.479084 260 -0.9 542808.1684	260 -0.9	0 8079.363067 0 260 9 -0.9 0 2591195.548 0 -2332075.993	260 -0.9 165154.8194 -148639.3374	0 260 9 -0.9 4 0 4 0	260 -0.9 161328.839 -145195.9551	260 -0.9 2293.351 -2064.02	0 260 0 -0.9 0	130 0.2 105418.7	130 0.2 63813.44337 12762.68867	0.2 6843371.002	130 0.2 1686.698944 337.3397887	130 0.2 91878 18376	130 2 0 3 690199.550 5 138039.910	0 130 2 0.2 4 120142 1 24028	Total Load Final Load % Net	11259148.3 1778361.39

Table C30. High Watershed Functions for Sediments - St. Johns Bayou.

St. Johns Bayou - Low Ret	ention - Sedime	nts															
Contour Range	Cynraes/Tunalo 19	Scrub/shrub marsh 19	BI H 42	Riparian 43	River 45	Onen water 24	March 20	Sandhar 24	Cotton 26	Cotton/soybeans 37	Southeans 20	Southeans/com 20	Com 40	Herb Veg 41	Pactura I C Total	-	
Scenario 1 - Existing	Cypress/Tupelo To	SCIUD/SHIUD Marsh 19	DLITI 42	Ripanan 43	River 45	Open water 24	Marsh 29	Sandbar 31	Collon 36	Collon/soybeans 37	Soybeans 36	Soybeans/com 39	Com 40	nerb. veg. 41	Pasture LC Total		
Conditions (No Flood)																	
275 ft	15.32	0	28.3	21.29	0	8.95	0	0	6.77	0	18.42		0.04	6.8	3.38 109.28	3	
Volume = 644	90.28257687	0							39.89641		108.5512445			40.13213763			
Concentration/Export Coefficient	150	150				150				130		130	130	130	130		
Wetland Function Factor	-0.1	-0.1		-0.1		-0.1				1		1	1		1		
Load	16704.94006	0					_		7738.19		21054.27712			7783.910269		Total Load	121022.479
Wetland Function Value	-1670.494006	0							7738.19		21054.27712			7783.910269			100100 570
Net Yield WATERSHED FUNCTION	15034.44605	0	27772.50804	20893.16948	0	8783.178339	0	0	6999.988	0	19045.75887		41.359	7041.347333	3 3494.8	Final Load % Net Removal	109106.579
Scenario 2 - Authorized Project																	
(2 seasons)																	
285 ft	250.07	0															
280 ft Volume Season 1 = 7298	80.22 564.7967703	0							10.89 142.2212	5.500450004	153.73 3938.716102		0.37	25.06			
Volume Season 2 = 1692	258.3850298	0							35.0762		495.1574499			80.71713845			
Concentration/Export Coefficient Season 1	150	150				150				130							
Concentration/Export Coefficient	130	130	. 150	150	130	130	130	130	130	130	130	130	130	130	130	_	
Season 2	260	260	260	260	260	260	260	260	0	0	0) () (0		
Wetland Function Factor	-0.1	-0.1				-0.1			1	1	1	1	1	1	1		
Load Season 1 *	104504.064	0							27971.57	1088.301623	774653.0956	4.442047443	541.93	86184.60448	3 23423		
Load Season 2 **	82868.67831	0							11249.56		158805.808			25887.42307		Total Load	1947118.37
Wetland Function Value (Both	-						1										-
Seasons) * Export Coefficients were reduced by 50% for upland and	-18737.27423	0	-48656.83729	-6519.378763	0	-7901.133996	0	0	39221.14	1088.301623	933458.9035	4.442047443	924.15	112072.0275	5 42203		
ag land covers ** No Export for upland and ag land covers																	
Net Yield	168635.4681	0	437911.5356	58674.40887	0	71110.20597	0	0	35464.67	985.9163086	844700.4556	4.024148198	834.94	101375.204	38122	Final Load	1757818.39
WATERSHED FUNCTION																% Net Removal	9.72
Scenario 3 - Avoid and																	
Minimize (2 seasons)																	
282 ft	101.09	0				44.74				0			0.46				
280 ft	80.22	0								0			0.37				
Volume Season 1 = 3080	377.2380537	0		176.3976931					61.87167		1092.381991			153.746244			
Volume Season 2 = 1692	258.3850298	0	553.1024348	110.3177172	0	99.49530753	0	0	35.0762	0	495.1574499	(1.1918	80.71713845	58.557		
Concentration/Export Coefficient Season 1	150	150	150	150	150	150	150	150	130	130	130	130	130	130	130		
Concentration/Export Coefficient	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130		
Season 2	260	260	260	260	260	260	260	260									
Wetland Function Factor	-0.1	-0.1				-0.1			1	1	1	1	1		1 1		
Load Season 1 *	69800.16846	0.1				30891.87394			11884.23	0	209823.3026		329.72	29531.3772			
Load Season 2 **	82868.67831	0							11249.56		158805.808			25887.4230		Total Load	1122380.74
Wetland Function Value (Both							<u> </u>								10.00		
Seasons)	-15266.88468	0	-35578.79514	-6801.963251	0	-6280.179008	0	0	23133.79	0	368629.1106	i c	711.94	55418.80033	35209		
Net Yield	137401.9621	0	320209.1563	61217.66926	0	56521.61108	0	0	20864.03	0	332536.2404	(641.95	49985.29896	31748	Final Load % Net	1011126.203
WATERSHED FUNCTION																Removal	9.9
Scenario 4 - Extreme High Flow (existing conditions)																	
300 and below	686.78	0				274.41				765.66			7497.1		176.21 54998.3	3	
Volume = 310381	3875.819129	0							2349.318		202275.1165			21117.84732		-	
Concentration Wetland Function Factor	260 -0.1	260				260 -0.1				130					130		
Load Load	1243044.184	-0.1 0							775369.6		66758932.76					Total Load	102094379.
Wetland Function Value	-124304.4184	0							775369.6		66758932.76			6969739.89		. Jean Lodu	102004373.
Net Yield	1118739.766	0							700022.8		60271609.72			6292452.94		Final Load	92139915.2
WATERSHED FUNCTION																% Net Removal	9.7
Scenario 5 - Moderate High Flow (existing conditions)																	
290 and below	485.21	0				144.21			90	54.48					102.57 9853.97	1	
Volume = 34372	1692.479084	C							313.9324	190.0337184	20379.26758			2055.384885			
Concentration	260	260				260		260	130	130				130			
Wetland Function Factor	-0.1	-0.1						-0.1		1		1		·	1		
Load	542808.1684	0							105418.7		6843371.002			690199.5504		Total Load	11259148.3
	-54280.81684	0							105418.7		6843371.002	1686.698944	91878	690199.5504	120142		10276919.2
Wetland Function Value Net Yield	488527.3515	0	2332075.993	148639.3374		145195.9551			95350.31		6189771.616			624279.6985		Final Load	

Table C31. Low Watershed Functions for Sediments - St. Johns Bayou.

APPENDIX D

Literature Review of Herbicide Application

Literature Review of Herbicide Application

Herbicide transport in surface and subsurface drainage was extensively studied during the Management Systems Evaluations Areas (MSEA) programs evaluation of farming-systems impacts on water quality in Walnut Creek Watershed, Iowa. The MSEA program was formed as a joint partnership between USDA-ARS, USDA-CSREES, USDA-ES, State Agricultural Experiment Stations, Cooperative Extension Service, U.S. Geological Survey, and USEPA (Hatfield, J.L. et al. 1999). The objective of the study was to gain a better understanding of the impacts of farming practices on water quality in the Midwest. The Walnut Creek watershed near Ames, Iowa was selected as a representative site.

The Walnut Creek watershed has been extensively monitored as part of the EPA Midwest Agricultural Surface/Subsurface Transport and Effects Research (MASTER) program. Corn and soybeans are the primary production crops within the Walnut Creek watershed. Approximately 88 percent of the watershed are represented by one of these two land uses (Donigian et al. 1993). Farming practices within the watershed utilize a corn-soybean rotation scheme. The other 12 percent of the watershed contain scattered pastures; wetland forests along stream channels, residential areas, and road networks. The total amount of acreage in corn was approximately 2,500 ha.

A detailed groundwater model was applied to the site to gain an understanding of the potential for herbicide transport from land application to water resources at the site (Lin et al., 1995). Typical use of the herbicide atrazine in the watershed corresponded to a pre-emergence application to acreage planted with corn. This type of application of the herbicide was incorporated into the simulation conducted by Lin et al. (1995). The model selected for the study was FEMWATER, a three-dimensional finite element model of density-dependent flow and transport through saturated-unsaturated porous media. The FEMWATER model allows for the evaluation of the impact of the application of agrichemicals on groundwater quality. The simulation described by Lin selected atrazine as the agrichemical to be simulated in the transport simulation.

In the Walnut Creek watershed, atrazine is typically applied with metachlor to control both annual and broadleaf weeds in acreage planted with corn. A pre-emergence banded application is sprayed directly onto the crop row. Crop rows range in size from approximately 25 to 30 cm depending on the planter being used. Atrazine is the common name for 2-chloro-4(ethylamino)-6(isopropylamino)-s-triazine and is a triazine herbicide. Herbicides in this family are not subject to excessive leaching from soils and are reversibly adsorbed to clay and organic colloids (Klingman and Ashton 1982). The selected simulation period was for the 1992-growing season. Donigian, Chinnaswamy, and Beyerlein (1993) calculated the amount of atrazine applied during the growing season to be 0.4 kg ha-1 of active ingredient. This value reflects 578 kg of active ingredient being applied to 1,413 ha of treated corn. To allow for the evaluation of the maximum possible amount of corn acreage being treated with atrazine for the 1992-growing season the entire 2,500 ha of corn were treated at the 0.4 kg ha⁻¹ rate.

Results from the simulation revealed that the herbicide leached to a depth of approximately 1.2 m during the simulation period from 6 April to 26 September. During the time span the herbicide was only found in the surface soil. No atrazine was found in any of the soil layers at the end of the simulation period. A sensitivity analyses was

conducted to determine the impacts of altering the land use, saturated hydraulic conductivity, distribution coefficient, decay constant, and loading rate parameters on the simulation output from the FEMWATER model. The analysis revealed that predicted concentrations of atrazine generated from the model upon altering the parameters were reasonable and represented the physical processes occurring within the watershed.

The simulation results coincide well with data collected by Moorman et al. (1999). Atrazine concentrations in the soil following the 1994-growing season (183 days after treatment) showed that the concentration decreased dramatically with depth. Concentrations ranged from 49 ug/kg at the 0-7.5 cm depth to less than 5 ug/kg from the 15-30 cm range. This value decreased to zero ug/kg at approximately the 30 cm range. In Morrman's study it was stated that the atrazine concentrations in subsurface drainage and groundwater were generally well below the Maximum Contaminant Limit (MCL) for drinking water. Only 1.4% of the groundwater samples beneath the subsurface drains (wells at the 2.6 m depth) contained > 3 ug L⁻¹ atrazine.

The other potentially pathway for atrazine loss is to surface water resources via overland flow. Jaynes et al. (1999) examined the potential effect of atrazine contamination to surface waters following atrazine application to corn as part of the MASTER program for a six-year period. During that period it was concluded that herbicide losses via stream discharge were a small fraction of the herbicide applied each year. Typically this value was found to be approximately < 0.006 kg kg⁻¹. It was noted that atrazine concentrations did occasionally exceed the MCL for drinking water. However, it was noted that the high concentration flows were ephemeral and monthly flow-averaged concentrations exceeded the MCL in only 1 month in four years.

Literature reports demonstrate that the potential contamination to water resources from atrazine application to corn and corn/soybean rotation is rather limited. The primary concern appears to be the relationship between application time and precipitation frequency. The worse scenarios for surface water contamination are high flow events immediately following application. Groundwater concentrations appear to be the highest during low runoff precipitation events in which high atrazine rates are applied year after year at the same location. It is a feasible assumption that through adoption of Best Management Practices (BMPs), in combination with monitoring efforts, that atrazine contamination to water resources can be maintained below the MCL.

References:

Hatfield, J.L., Jaynes, M.R., Burkart, C.A., Cambardella, T.B., Morrman, J.H., Prueger, and Smith, M.A. 1999. Special submissions—farming systems impacts on water quality in Walnut Creek Watershed, Iowa, J. Environ. Qual. 28:11-24.

Donigian, A.S., Chinnaswamy, R.V., and Beyerlein, D.C. 1993. Surface water exposure assessment for Walnut Creek, Iowa, preliminary application of the EPA hydrological simulation program – FORTRAN (HSPF) to assess agrichemical contributions and impacts, Final Review Draft, U.S. Environmental Protection Agency, Athens, GA.

Lin, H.J., Deliman, P.N., and Martin, W.D. 1995. FEMWATER usability for the EPA MASTER and wellhead protection research programs, Technical Report HL-95-5, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Klingman, G.C. and Ashton, F.M. 1982. Weed science principles and practices, John Wiley & Sons, NY, 237-249.

Moorman, T.B., Jaynes, D.B., Cambardella, J.L., Hatfield, R.L., Pfeiffer, R.L., and Morrow, A.J. 1999. Water quality in Walnut Creek Watershed: herbicides in soils, subsurface drainage, and groundwater, J. Environ. Qual. 28:35-45.

Jaynes, D.B., Hatfield, J.L., and Meek, D.W. Water quality in Walnut Creek Watershed: herbicides and nitrate in surface waters, J. Environ. Qual. 28:45-59.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2000 Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Supplemental Water Quality Analysis—St. Johns Bayou and New Madrid Floodway **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Steven L. Ashby, Carlos E. Ruiz, Patrick N. Deliman 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Research and Development Center **Environmental Laboratory** ERDC/EL SR-00-7 3909 Halls Ferry Road Vicksburg, MS 39180-6199 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Engineer District, Memphis Memphis, TN 38103-1894 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A supplemental assessment of water quality data was conducted to describe potential impacts on water quality in the St. Johns Bayou and New Madrid Floodway as a result of the proposed flood control project. Existing water quality data from Federal and state resource agencies and literature-based information on land use effects on water quality were compiled for evaluation. Results of this evaluation were used to describe water quality conditions and, in conjunction with land cover and hydrology information, the relative transport/retention of selected materials associated with various hydrologic events based on selected surface water elevations. Specific issues addressed included evaluation of 1) the effects of hydrologic changes on water quality for both the area impacted by the proposed project and in relationship to the overall water quality of the Mississippi River, 2) the effects on water quality associated with potential changes in pesticide use, and 3) the effects of proposed groundwater supplement on Big Oak Tree State Park. Water quality in the area reflects conditions typical for basins where agriculture is the dominant land use. In general, nutrient concentrations (with the exception of phosphorus) were not excessively high except during periods of elevated flow, and basin concentrations were not substantially different than observations for the Mississippi River. Sediment concentrations were generally lower than concentrations in the Mississippi River and increase with runoff as expected. With the exception of a few occasional high concentrations of nitrates,

Big Oak Tree State Park Water quality Nutrients New Madrid Floodway St. Johns Bayou Wetlands 16. SECURITY CLASSIFICATION OF: 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON 17. LIMITATION OF ABSTRACT **OF PAGES** a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) 186 **UNCLASSIFIED** UNCLASSIFIED

15. SUBJECT TERMS

(Continued)

14. (Concluded).

groundwater quality is acceptable although phosphorus concentrations in groundwater were generally higher than in surface waters. Point sources were the most notable sources of extremes (high nutrients or low dissolved oxygen concentrations).

Potential changes in pesticide usage and impacts on water quality were evaluated with an assessment of potential changes in cropping practices, a literature review of herbicide transport research, and an assessment of pesticide data compiled in the data retrievals. In general, pesticide concentrations were relatively low in surface and subsurface waters, and water supply concentrations were below water quality criteria for drinking water. The impact of pesticides, atrazine in particular, on public groundwater resources is expected to be minimal.

Water quality with the project alternative should be similar to conditions that exist during periods of no flooding. Material processing should be similar between these two scenarios as well. The basin most likely retains or removes material from headwaters and floodwaters, and this process is maximized during low-water periods and is comparable with the alternative project.

Impacts to the water quality of the Mississippi River with the proposed or alternative project in place are not expected to be discernible, due to the overwhelming volume of water in the Mississippi River relative to floodwater volume in the project area. Mass balance estimates indicated that impacts to material loads of the Mississippi River are less than 0.1% for moderate flows with the project.

Potential impacts to Big Oak Tree State Park with the project are likely to be associated with a decreased supply of sediments and the associated sustainability of the site. Historical alteration in the flow regime associated with the development of agriculture in the area during the 20th century has been suggested as a major mechanism contributing to the decline at the park. The use of groundwater to restore a flooding regime more conducive to the sustainability of the park is suggested, and the impacts of reduction in material supply (e.g. sediments) can be lessened with the use of surface water when available.